Protein engineering for directed immobilization.

Much effort has been put into the optimization of the functional activity of proteins. For biosensors this protein functional optimization will increase the biosensor's sensitivity and/or selectivity. However, the strategy chosen for the immobilization of the proteins to the sensor surface might be equally important for the development of sensor surfaces that are optimally biologically active. Several studies published in recent years show that the oriented immobilization of the bioactive molecules improves the sensor's properties. In this review, we discuss the state of the art of the different protein immobilization strategies that are commonly used today with a special focus on biosensor applications. These strategies include nonspecific immobilization techniques either by physical adsorption, by covalent coupling, or by specific immobilization via site-specifically introduced tags or bio-orthogonal chemistry. The different tags and bio-orthogonal chemistry available and the techniques to site-specifically introduce these groups in proteins are also discussed.

[1]  L. Bachas,et al.  Improving the activity of immobilized subtilisin by site-directed attachment through a genetically engineered affinity tag , 2001, Fresenius' journal of analytical chemistry.

[2]  Yibin Ying,et al.  Immunosensors for detection of pesticide residues. , 2008, Biosensors & bioelectronics.

[3]  R. Huisgen 1,3-Dipolar Cycloadditions. Past and Future† , 1963 .

[4]  P. Schultz,et al.  Site-specific coupling and sterically controlled formation of multimeric antibody fab fragments with unnatural amino acids. , 2011, Journal of molecular biology.

[5]  N. Hayashi,et al.  Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine. , 2006, Journal of biochemistry.

[6]  Sergey Piletsky,et al.  Biosensors for marine pollution research, monitoring and control. , 2002, Marine pollution bulletin.

[7]  C. Bertozzi,et al.  Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag , 2009, Proceedings of the National Academy of Sciences.

[8]  Po-Chiao Lin,et al.  Site-specific protein modification through Cu(I)-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication. , 2006, Angewandte Chemie.

[9]  M. Finn,et al.  Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. , 2004, Chemistry & biology.

[10]  Emmanuel Baslé,et al.  Protein chemical modification on endogenous amino acids. , 2010, Chemistry & biology.

[11]  A. Juillerat,et al.  Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. , 2003, Chemistry & biology.

[12]  R. Huisgen Kinetics and Mechanism of 1,3‐Dipolar Cycloadditions , 1963 .

[13]  M. Francis,et al.  Tyrosine-selective protein alkylation using pi-allylpalladium complexes. , 2006, Journal of the American Chemical Society.

[14]  G. Müller-Newen,et al.  Directed covalent immobilization of fluorescently labeled cytokines. , 2011, Bioconjugate chemistry.

[15]  Bastida,et al.  A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports , 1998, Biotechnology and bioengineering.

[16]  H. Vogel,et al.  Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro. , 2004, Methods.

[17]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[18]  Kathryn S. Prickett,et al.  A Short Polypeptide Marker Sequence Useful for Recombinant Protein Identification and Purification , 1988, Bio/Technology.

[19]  K. Terpe Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems , 2002, Applied Microbiology and Biotechnology.

[20]  K. Imamura,et al.  Recent Advances in Controlled Immobilization of Proteins onto the Surface of the Solid Substrate and Its Possible Application to Proteomics , 2008 .

[21]  Johan Ingvarsson,et al.  Microarrays based on affinity‐tagged single‐chain Fv antibodies: Sensitive detection of analyte in complex proteomes , 2005, Proteomics.

[22]  Roberto Fernandez-Lafuente,et al.  Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. , 2011, Enzyme and microbial technology.

[23]  J. Camarero,et al.  Protein Microarrays: Novel Developments and Applications , 2010, Pharmaceutical Research.

[24]  M. Friedman,et al.  Protein reactions with methyl and ethyl vinyl sulfones , 1988, Journal of protein chemistry.

[25]  M. Wilchek,et al.  Oriented versus random protein immobilization. , 2003, Journal of biochemical and biophysical methods.

[26]  R. Giordano,et al.  Immobilization and stabilization of microbial lipases by multipoint covalent attachment on aldehyde-resin affinity: Application of the biocatalysts in biodiesel synthesis , 2011 .

[27]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[28]  J. Rozzell,et al.  Immobilization of Enzymes by Covalent Attachment , 2005 .

[29]  T. Aastrup,et al.  Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity. , 2010, Analytical biochemistry.

[30]  K. Strømgaard,et al.  Site‐Specific Incorporation of Unnatural Amino Acids into Proteins , 2004, Chembiochem : a European journal of chemical biology.

[31]  M. Sharpe It's a bug's life: biosensors for environmental monitoring. , 2003, Journal of environmental monitoring : JEM.

[32]  R. Fernández-Lafuente,et al.  Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. , 2005, Journal of biotechnology.

[33]  G. Cosa,et al.  Site-specific fluorescent labeling and oriented immobilization of a triple mutant of CYP3A4 via C64. , 2012, Bioconjugate chemistry.

[34]  L. Fruk,et al.  Bioconjugation of CdSe/ZnS nanoparticles with SNAP tagged proteins. , 2011, Chemical communications.

[35]  S. Weiss,et al.  Efficient site-specific labeling of proteins via cysteines. , 2008, Bioconjugate chemistry.

[36]  T. Hosoya,et al.  Site-specific attachment of a protein to a carbon nanotube end without loss of protein function. , 2012, Bioconjugate chemistry.

[37]  C. Neylon,et al.  Covalent Attachment of Proteins to Solid Supports and Surfaces via Sortase-Mediated Ligation , 2007, PloS one.

[38]  A. Ting,et al.  Site-specific labeling of proteins with small molecules in live cells. , 2005, Current opinion in biotechnology.

[39]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[40]  A. Ting,et al.  Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. , 2008, Journal of the American Chemical Society.

[41]  F. Kienberger,et al.  A new, simple method for linking of antibodies to atomic force microscopy tips. , 2007, Bioconjugate chemistry.

[42]  M. Distefano,et al.  Chemoenzymatic reversible immobilization and labeling of proteins without prior purification. , 2012, Journal of the American Chemical Society.

[43]  A. Lowe,et al.  Thiol-ene “click” reactions and recent applications in polymer and materials synthesis , 2010 .

[44]  M vandeVen,et al.  Impedimetric immunosensors based on the conjugated polymer PPV. , 2005, Biosensors & bioelectronics.

[45]  Tom W Muir,et al.  Protein ligation: an enabling technology for the biophysical analysis of proteins , 2006, Nature Methods.

[46]  C. Glabe,et al.  Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide , 1989 .

[47]  Seung Pil Pack,et al.  Cyclization tag for the detection and facile purification of backbone-cyclized proteins. , 2013, Analytical biochemistry.

[48]  Neel S. Joshi,et al.  Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy. , 2008, Journal of the American Chemical Society.

[49]  Jean-Louis Marty,et al.  Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. , 2011, Biosensors & bioelectronics.

[50]  T. Wieland,et al.  Über Peptidsynthesen. 8. Mitteilung Bildung von S‐haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten , 1953 .

[51]  Bingqian Xu,et al.  High-resolution single-molecule recognition imaging of the molecular details of ricin-aptamer interaction. , 2012, The journal of physical chemistry. B.

[52]  Nediljko Budisa,et al.  Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. , 2004, Angewandte Chemie.

[53]  J. V. Hest,et al.  Efficient incorporation of unsaturated methionine analogues into proteins in vivo , 2000 .

[54]  I. Wilson,et al.  Structural evidence for induced fit as a mechanism for antibody-antigen recognition. , 1994, Science.

[55]  S. Briggs,et al.  Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs. , 2012, ACS chemical biology.

[56]  T. Posner Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe , 1905 .

[57]  N. Stephanopoulos,et al.  Choosing an effective protein bioconjugation strategy. , 2011, Nature chemical biology.

[58]  Doris Wedlich,et al.  SNAP-tag as a tool for surface immobilization. , 2013, Current pharmaceutical design.

[59]  J. Strouboulis,et al.  Optimal use of tandem biotin and V5 tags in ChIP assays , 2009, BMC Molecular Biology.

[60]  Hee-Sung Park,et al.  Controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid. , 2011, Analytical chemistry.

[61]  Dick B Janssen,et al.  Evolving haloalkane dehalogenases. , 2004, Current opinion in chemical biology.

[62]  A. Beck‐Sickinger,et al.  Specifically Immobilised Aldo/Keto Reductase AKR1A1 Shows a Dramatic Increase in Activity Relative to the Randomly Immobilised Enzyme , 2007, Chembiochem : a European journal of chemical biology.

[63]  Kai Johnsson,et al.  How to obtain labeled proteins and what to do with them. , 2010, Current opinion in biotechnology.

[64]  J. Chin,et al.  Reprogramming the genetic code , 2012, Nature Reviews Genetics.

[65]  R. Randall,et al.  Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. , 1991, The Journal of general virology.

[66]  Kelly Karns,et al.  Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting. , 2012, Analytical chemistry.

[67]  C. Niemeyer Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. , 2010, Angewandte Chemie.

[68]  Carolyn R Bertozzi,et al.  Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Francis,et al.  Selective tryptophan modification with rhodium carbenoids in aqueous solution. , 2004, Journal of the American Chemical Society.

[70]  T. Vo‐Dinh,et al.  Biosensors and biochips: advances in biological and medical diagnostics , 2000, Fresenius' journal of analytical chemistry.

[71]  T. Proft Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation , 2009, Biotechnology Letters.

[72]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[73]  Harm-Anton Klok,et al.  Peptide/protein-polymer conjugates: synthetic strategies and design concepts. , 2008, Chemical communications.

[74]  Christopher N Bowman,et al.  Thiol-ene click chemistry. , 2010, Angewandte Chemie.

[75]  D. Barceló,et al.  Biosensors for environmental applications: Future development trends , 2004 .

[76]  P. Kast Making Proteins with Unnatural Amino Acids: The First Engineered Aminoacyl‐tRNA Synthetase Revisited , 2011, Chembiochem : a European journal of chemical biology.

[77]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[78]  J. Chin,et al.  Reprogramming the genetic code: from triplet to quadruplet codes. , 2012, Angewandte Chemie.

[79]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[80]  Peter Dubruel,et al.  Recent advances in recognition elements of food and environmental biosensors: a review. , 2010, Biosensors & bioelectronics.

[81]  C. Barner‐Kowollik,et al.  Orthogonal Transformations on Solid Substrates: Efficient Avenues to Surface Modification , 2009 .

[82]  L. Bachas,et al.  Oriented immobilization of proteins , 1998 .

[83]  Itaru Hamachi,et al.  Protein organic chemistry and applications for labeling and engineering in live-cell systems. , 2013, Angewandte Chemie.

[84]  S. Minteer,et al.  Enzyme Immobilization in Biotechnology , 2008 .

[85]  Kechun Zhang,et al.  Artificial polypeptide scaffold for protein immobilization. , 2005, Journal of the American Chemical Society.

[86]  Xue-Long Sun,et al.  End-point immobilization of recombinant thrombomodulin via sortase-mediated ligation. , 2012, Bioconjugate chemistry.

[87]  R A Houghten,et al.  Crystal structure of a peptide complex of anti-influenza peptide antibody Fab 26/9. Comparison of two different antibodies bound to the same peptide antigen. , 1994, Journal of molecular biology.

[88]  Wim E Hennink,et al.  Nonnatural amino acids for site-specific protein conjugation. , 2009, Bioconjugate chemistry.

[89]  J. Rao,et al.  HaloTag protein-mediated specific labeling of living cells with quantum dots. , 2008, Biochemical and biophysical research communications.

[90]  M. Bruns,et al.  Structure and chemical composition of mixed benzylguanine‐ and methoxy‐terminated self‐assembled monolayers for immobilization of biomolecules , 2012 .

[91]  Igor L. Medintz,et al.  Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. , 2013, Chemical reviews.

[92]  T. Kodadek,et al.  Techniques: Oxidative cross-linking as an emergent tool for the analysis of receptor-mediated signalling events. , 2005, Trends in pharmacological sciences.

[93]  P G Schultz,et al.  A general method for site-specific incorporation of unnatural amino acids into proteins. , 1989, Science.

[94]  E. Lemke,et al.  What precision‐protein‐tuning and nano‐resolved single molecule sciences can do for each other , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[95]  A. Plückthun,et al.  An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. , 1994, BioTechniques.

[96]  H. Staudinger,et al.  Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine , 1919 .

[97]  Justin Jordaan,et al.  Advances in enzyme immobilisation , 2009, Biotechnology Letters.

[98]  C. Niemeyer,et al.  DNA-directed immobilization of horseradish peroxidase-DNA conjugates on microelectrode arrays: towards electrochemical screening of enzyme libraries. , 2007, Chemistry.

[99]  Swati Tyagi,et al.  Click strategies for single-molecule protein fluorescence. , 2012, Journal of the American Chemical Society.

[100]  M. Francis,et al.  Transition metal catalyzed methods for site-selective protein modification. , 2006, Current opinion in chemical biology.

[101]  M. Francis,et al.  Attachment of peptide building blocks to proteins through tyrosine bioconjugation. , 2008, Bioconjugate chemistry.

[102]  Teruyuki Nagamune,et al.  Design of Ca2+‐independent Staphylococcus aureus sortase A mutants , 2012, Biotechnology and bioengineering.

[103]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[104]  J. V. Hest,et al.  Protein Modification by Strain‐Promoted Alkyne–Azide Cycloaddition , 2011 .

[105]  C. Barbas,et al.  Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. , 2010, Journal of the American Chemical Society.

[106]  C. Barbas,et al.  Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction. , 2013, Bioconjugate chemistry.

[107]  Neel S. Joshi,et al.  A three-component Mannich-type reaction for selective tyrosine bioconjugation. , 2004, Journal of the American Chemical Society.

[108]  L. Bachas,et al.  Improving the activity of immobilized subtilisin by site-specific attachment to surfaces. , 1997, Analytical chemistry.

[109]  J. Feijen,et al.  Protein immobilization strategies for protein biochips. , 2007, Biomacromolecules.

[110]  G K Lewis,et al.  Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product , 1985, Molecular and cellular biology.

[111]  Peter G Schultz,et al.  Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. , 2012, Journal of the American Chemical Society.

[112]  J. Porath,et al.  Metal chelate affinity chromatography, a new approach to protein fractionation , 1975, Nature.

[113]  O. Abián,et al.  Multifunctional epoxy supports: a new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage. , 2000, Biomacromolecules.

[114]  A. Michael Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester , 1893 .

[115]  Detection of polyclonal antibody against any area of the protein-antigen using immobilized protein-antigens: the critical role of the immobilization protocol. , 2006 .

[116]  Maja Köhn,et al.  Immobilization strategies for small molecule, peptide and protein microarrays , 2009, Journal of peptide science : an official publication of the European Peptide Society.

[117]  M. Merkx,et al.  Efficient and Chemoselective Surface Immobilization of Proteins by Using Aniline‐Catalyzed Oxime Chemistry , 2009, Chembiochem : a European journal of chemical biology.

[118]  R. Fernández-Lafuente,et al.  Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports , 2007 .

[119]  A. Pegg Repair of O6-alkylguanine by alkyltransferases , 2000 .

[120]  P. Dawson,et al.  Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. , 2008, Bioconjugate chemistry.

[121]  Timothy L. Foley,et al.  Site-specific protein modification: advances and applications. , 2007, Current opinion in chemical biology.

[122]  J. Camarero Recent developments in the site‐specific immobilization of proteins onto solid supports , 2008, Biopolymers.

[123]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[124]  Herbert Waldmann,et al.  Bioorthogonal chemistry for site-specific labeling and surface immobilization of proteins. , 2011, Accounts of chemical research.

[125]  Ronald T Raines,et al.  Advances in Bioconjugation. , 2010, Current organic chemistry.

[126]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[127]  J. Camarero NEW DEVELOPMENTS FOR THE SITE-SPECIFIC ATTACHMENT OF PROTEIN TO SURFACES , 2005 .

[128]  Hui-wang Ai Biochemical analysis with the expanded genetic lexicon , 2012, Analytical and Bioanalytical Chemistry.

[129]  A. Welle,et al.  Selective immobilization of Sonic hedgehog on benzylguanine terminated patterned self-assembled monolayers. , 2011, Biomaterials.

[130]  J. Lutz,et al.  Copper-free azide-alkyne cycloadditions: new insights and perspectives. , 2008, Angewandte Chemie.

[131]  B. Spengler,et al.  Direct readout of protein-protein interactions by mass spectrometry from protein-DNA microarrays. , 2005, Angewandte Chemie.

[132]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[133]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[134]  H. Waldmann,et al.  Photochemical surface patterning by the thiol-ene reaction. , 2008, Angewandte Chemie.

[135]  D. Mayer,et al.  Direct electrochemistry of novel affinity-tag immobilized recombinant horse heart cytochrome c. , 2012, Biosensors & bioelectronics.

[136]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[137]  Herbert Waldmann,et al.  Protein Biochips: Oriented Surface Immobilization of Proteins† , 2010 .

[138]  A. Welle,et al.  Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[139]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[140]  P. Schultz,et al.  Expanding the genetic code. , 2006, Annual review of biophysics and biomolecular structure.

[141]  O. Abián,et al.  Some special features of glyoxyl supports to immobilize proteins , 2005 .

[142]  S. Gambhir,et al.  HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. , 2006, Angewandte Chemie.

[143]  A. Juillerat,et al.  Engineering Substrate Specificity of O6‐Alkylguanine‐DNA Alkyltransferase for Specific Protein Labeling in Living Cells , 2005, Chembiochem : a European journal of chemical biology.

[144]  F. Perler,et al.  Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. , 1997, Gene.

[145]  J. Chin,et al.  Expanding the Genetic Code of an Animal , 2011, Journal of the American Chemical Society.

[146]  P. Schultz,et al.  Synthetase polyspecificity as a tool to modulate protein function. , 2011, Bioorganic & medicinal chemistry letters.

[147]  H. Waldmann,et al.  Chemical strategies for generating protein biochips. , 2008, Angewandte Chemie.

[148]  N. Devaraj,et al.  Copper Catalyzed Azide‐Alkyne Cycloadditions on Solid Surfaces: Applications and Future Directions , 2007 .