Assessment of service induced microstructural damage and its rejuvenation in turbine blades

AbstractCorrelations between service induced microstructural degradation and creep properties in investment cast IN738LC turbine blades are discussed. Microstructural degradation in the form of γ’ coarsen-ing, MC carbide degeneration, formation of continuous networks of grain boundary M23C6 carbides, and the disappearance of serrated grain boundaries are considered in some detail. Their influence on primary (tp,εp), secondary (ts, εs,εm) and tertiary (tt, εt) creep behavior is analyzed through rela-tionships of the form: $$\left( {\frac{{t_p + t_s }}{{\varepsilon _p + \varepsilon _s }}} \right)\dot \varepsilon _m = K(Initial transient behavior)$$ $$\begin{gathered} \left( {t_{t/\varepsilon _t }^{2 33} } \right)\dot \varepsilon _m = K(Intragranular creep governed \hfill \\ by \gamma ' interparticle spacing) \hfill \\ \end{gathered} $$ $$\begin{gathered} \left[ { - t_{t/(e^{ - 50_\varepsilon } t - 1)} } \right]\dot \varepsilon _m = K_2 (Intragranular creep governed \hfill \\ by mobile dislocation density) \hfill \\ \end{gathered} $$ and $$\left( {t_t /\varepsilon _t } \right)\dot \varepsilon _m = K(Grain boundary cavity nucleation)$$ These relationships are able to reveal service induced degeneration effects and can therefore be used to qualify rejuvenated blades. A systematic strategy for designing a HIPping rejuvenation cycle for Ni-base superalloys is presented. Once a rejuvenation cycle is designed, the above-mentioned relationships can then be used to analyze the extent of the rejuvenation of microstructure and creep properties in reheat-treated or hot isostatically pressed service exposed turbine blades. The influ-ence of trace amounts of Zr on creep properties of service exposed IN738LC turbine blades is also highlighted.

[1]  W. Wallace,et al.  A Note on the Microstructural Dependence of Creep Strength in Inconel 700 , 1982 .

[2]  R. A. Stevens,et al.  The dependence of creep rate on microstructure in a γ′ strengthened superalloy , 1981 .

[3]  A. Omsén,et al.  The mechanisms of improved creep strength in a new austenitic stainless steel , 1975 .

[4]  B. Wilshire,et al.  Friction stress measurements during creep of Nimonic 105 , 1979 .

[5]  K. Milička,et al.  The relation between minimum creep rate and time to fracture , 1976 .

[6]  G. Mccarthy,et al.  Low temperature carbide precipitation in a nickel base superalloy , 1985 .

[7]  G. Sundarajan The effect of cavitation and microstructural damage on the intergranular creep fracture of nickel-base superalloys , 1985 .

[8]  M. Mclean,et al.  Particle-coarsening, σ0 and tertiary creep , 1983 .

[9]  A. K. Koul,et al.  Creep life predictions in nickel-based superalloys , 1984 .

[10]  K. R. Williams,et al.  Creep behaviour of 12Cr12Mo14V steel at engineering stresses , 1979 .

[11]  J. Wortmann Improving reliability and lifetime of rejuvenated turbine blades , 1985 .

[12]  M. Loveday,et al.  Prestrain-induced particle microcracking and creep cavitation in IN597 , 1983 .

[13]  G. W. Meetham Trace elements in superalloys–an overview , 1984 .

[14]  E. Hornbogen,et al.  Theorie der Wechselwirkung von Versetzungen mit kohärenten geordneten Zonen (I) , 1965 .

[15]  J. B. Hull,et al.  A non-crystalline phase in splat-quenched germanium , 1973 .

[16]  J. D. Parker,et al.  The Effect of a Dispersion of Cobalt Particles on High-Temperature Creep of Copper , 1975 .

[17]  J. Gittus Theoretical equation for steady-state dislocation creep in a material having a threshold stress , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  A. Perry Cavitation in creep , 1974 .

[19]  F. G. Wilson,et al.  A study of zone formation in an austenitic steel containing 4% titanium , 1968 .

[20]  J. R. Quinn,et al.  Experiences with epidural anesthesia: 7730 cases. I. , 1961, Anesthesia and analgesia.

[21]  A. K. Koul,et al.  On the mechanism of serrated grain boundary formation in Ni-based superalloys , 1983 .

[22]  K. R. Williams,et al.  Stress-Change Experiments during High-Temperature Creep of Copper, Iron, and Zinc , 1973 .

[23]  R. Thamburaj,et al.  Serrated grain boundary formation potential of Ni-based superalloys and its implications , 1985 .

[24]  T. Gibbons,et al.  Influence of trace elements on creep and stress-rupture properties of Nimonic 105 , 1979 .

[25]  T. B. Gibbons,et al.  Tertiary creep in nickel-base superalloys: analysis of experimental data and theoretical synthesis , 1987 .