Chemical neuroanatomy of the fly's movement detection pathway

In Diptera, subsets of small retinotopic neurons provide a discrete channel from achromatic photoreceptors to large motion‐sensitive neurons in the lobula complex. This pathway is distinguished by specific affinities of its neurons to antisera raised against glutamate, aspartate, γ‐aminobutyric acid (GABA), choline acetyltransferase (ChAT), and a N‐methyl‐D‐aspartate type 1 receptor protein (NMDAR1). Large type 2 monopolar cells (L2) and type 1 amacrine cells, which in the external plexiform layer are postsynaptic to the achromatic photoreceptors R1–R6, express glutamate immunoreactivity as do directionally selective motion‐sensitive tangential neurons of the lobula plate. L2 monopolar cells ending in the medulla are accompanied by terminals of a second efferent neuron T1, the dendrites of which match NMDAR1‐immunoreactive profiles in the lamina. L2 and T1 endings visit ChAT and GABA‐immunoreactive relays (transmedullary neurons) that terminate from the medulla in a special layer of the lobula containing the dendrites of directionally selective retinotopic T5 cells. T5 cells supply directionally selective wide‐field neurons in the lobula plate. The present results suggest a circuit in which initial motion detection relies on interactions among amacrines and T1, and the subsequent convergence of T1 and L2 at transmedullary cell dendrites. Convergence of ChAT‐immunoreactive and GABA‐immunoreactive transmedullary neurons at T5 dendrites in the lobula, and the presence there of local GABA‐immunoreactive interneurons, are suggested to provide excitatory and inhibitory elements for the computation of motion direction. A comparable immunocytological organization of aspartate‐ and glutamate‐immunoreactive neurons in honeybees and cockroaches further suggests that neural arrangements providing directional motion vision in flies may have early evolutionary origins. J. Comp. Neurol. 468:6–23, 2004. © 2003 Wiley‐Liss, Inc.

[1]  N. Strausfeld,et al.  The mushroom bodies of Drosophila melanogaster: An immunocytological and golgi study of Kenyon cell organization in the calyces and lobes , 2003, Microscopy research and technique.

[2]  S. Massey,et al.  Glutamate receptors at rod bipolar ribbon synapses in the rabbit retina , 2002, The Journal of comparative neurology.

[3]  J. Bacon,et al.  Identified octopaminergic neurons provide an arousal mechanism in the locust brain. , 1995, Journal of neurophysiology.

[4]  Dr. Willi A. Ribi,et al.  The Neurons of the First Optic Ganglion of the Bee (Apis mellifera) , 1975, Advances in Anatomy, Embryology and Cell Biology / Ergebnisse der Anatomie und Entwicklungsgeschichte / Revues d’anatomie et de morphologie expérimentale.

[5]  N. J. Strausfeld,et al.  Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .

[6]  T. Kitamoto,et al.  Regulation of choline acetyltransferase/lacZ fusion gene expression in putative cholinergic neurons of Drosophila melanogaster. , 1995, Journal of neurobiology.

[7]  F. Deinhardt,et al.  Preparation of a semipermanent mounting medium for fluorescent antibody studies. , 1960, Virology.

[8]  Erich Buchner,et al.  NEUROANATOMICAL MAPPING OF VISUALLY INDUCED NERVOUS ACTIVITY IN INSECTS BY 3H-DEOXYGLUCOSE , 1984 .

[9]  N. Strausfeld,et al.  Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. , 1977, Science.

[10]  M. Burrows,et al.  The Neuroanatomy of Nitric Oxide–Cyclic GMP Signaling in the Locust: Functional Implications for Sensory Systems1 , 2001 .

[11]  G. Bicker,et al.  Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor‐like antigen in the brain of the honeybee , 1989, The Journal of comparative neurology.

[12]  H. Honegger,et al.  Glutamate‐like immunoreactivity marks compartments of the mushroom bodies in the brain of the cricket , 2000, The Journal of comparative neurology.

[13]  M. Geffard,et al.  Localization of Glutamate in the Nervous System of the Fly Drosophila melanogaster: An Immunocytochemical Study , 2004, Journal of Evolutionary Biochemistry and Physiology.

[14]  N. Strausfeld,et al.  L3, the 3rd 2nd order neuron of the 1st visual ganglion in the “neural superposition” eye of Musca domestica , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[15]  D. Nässel Histamine in the brain of insects: a review , 1999, Microscopy research and technique.

[16]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[17]  Walter Kaiser,et al.  Horizontal movement detectors of honeybees: Directionally-selective visual neurons in the lobula and brain , 1982, Journal of comparative physiology.

[18]  Heinz Wässle,et al.  The rod pathway of the macaque monkey retina: Identification of AII‐amacrine cells with antibodies against calretinin , 1995, The Journal of comparative neurology.

[19]  E. Buchner,et al.  Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster , 1986, Cell and Tissue Research.

[20]  S. Buckingham,et al.  Cultured insect mushroom body neurons express functional receptors for acetylcholine, GABA, glutamate, octopamine, and dopamine. , 1999, Journal of neurophysiology.

[21]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.

[22]  N. Strausfeld,et al.  Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. , 1973, Brain research.

[23]  S. Laughlin,et al.  Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system , 2000, Vision Research.

[24]  E. Meyer,et al.  Insect optic lobe neurons identifiable with monoclonal antibodies to GABA , 2004, Histochemistry.

[25]  C. Seidel,et al.  Colocalization of NADPH-diaphorase and GABA-immunoreactivity in the olfactory and visual system of the locust , 1997, Brain Research.

[26]  N. J. Strausfeld,et al.  The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[27]  H. Keshishian,et al.  Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[29]  A. Borst,et al.  Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. , 1996, Journal of neurophysiology.

[30]  K. Blechschmidt,et al.  Distribution of GABA-like immunoreactive neurons in the optic lobes of Periplaneta americana , 2004, Cell and Tissue Research.

[31]  N. Strausfeld,et al.  Retinotopic pathways providing motion‐selective information to the lobula from peripheral elementary motion‐detecting circuits , 2003, The Journal of comparative neurology.

[32]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[33]  N. Strausfeld,et al.  Anatomical organization of retinotopic motion‐sensitive pathways in the optic lobes of flies , 2003, Microscopy research and technique.

[34]  H. Wassle,et al.  Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  J. Storm-Mathisen,et al.  Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[37]  N. Strausfeld,et al.  Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana , 1997, The Journal of comparative neurology.

[38]  Martin Egelhaaf,et al.  Neural Mechanisms of Visual Course Control in Insects , 1989 .

[39]  Florian Engert,et al.  Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons , 2002, Nature.

[40]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[41]  N. Strausfeld,et al.  Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly , 1998, The Journal of comparative neurology.

[42]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[43]  Michel Geffard,et al.  First demonstration of highly specific and sensitive antibodies against dopamine , 1984, Brain Research.

[44]  S. Kambhampati Phylogenetic relationship among cockroach families inferred from mitochondrial12S rRNA gene sequence , 1996, Systematic Entomology.

[45]  N. Strausfeld,et al.  Taurine‐, aspartate‐ and glutamate‐like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body , 2001, The Journal of comparative neurology.

[46]  P. Salvaterra,et al.  Localization of choline acetyltransferase‐expressing neurons in Drosophila nervous system , 1999, Microscopy research and technique.

[47]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Small-Field Retinotopic Elements Responding to Motion Are Evolutionarily Conserved across Taxa , 1996, The Journal of Neuroscience.

[48]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[49]  C. Schuster,et al.  of a putative NMDA receptor protein expressed in the head of the adult fly , 1993 .

[50]  D. Nässel Neurotransmitters and neuromodulators in the insect visual system , 1991, Progress in Neurobiology.

[51]  H. Betz,et al.  Glutamate receptors of Drosophila melanogaster: cloning of a kainate-selective subunit expressed in the central nervous system. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Colonnier THE TANGENTIAL ORGANIZATION OF THE VISUAL CORTEX. , 1964, Journal of anatomy.

[53]  N. J. Strausfeld,et al.  The columnar organization of the second synaptic region of the visual system of Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[54]  J. Bockaert,et al.  Distribution of metabotropic glutamate receptor DmGlu‐A in Drosophila melanogaster central nervous system , 2001, The Journal of comparative neurology.

[55]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[56]  R. Hardie,et al.  A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse , 1989, Nature.

[57]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  D. Sattelle,et al.  Cholinergic Nerve Terminals in the Central Nervous System of Insects , 1990, Journal of neuroendocrinology.

[59]  E. Strettoi,et al.  Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina , 1990, The Journal of comparative neurology.

[60]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[61]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[62]  R. Pourcho,et al.  Localization of AMPA-selective glutamate receptor subunits in the cat retina: A light- and electron-microscopic study , 1999, Visual Neuroscience.

[63]  O. Trujillo-Cenóz,et al.  Light and electronmicroscope study of one of the systems of centrifugal fibers found in the lamina of muscoid flies , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[64]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[66]  N. Strausfeld,et al.  Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta , 2000, The Journal of comparative neurology.

[67]  Gerd Leitinger,et al.  Immunocytochemical evidence that collision sensing neurons in the locust visual system contain acetylcholine , 2000, The Journal of comparative neurology.

[68]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[69]  H. Wässle,et al.  Immunocytochemical description of five bipolar cell types of the mouse retina , 2003, The Journal of comparative neurology.

[70]  H. Keshishian,et al.  Axonal guidance and the development of muscle fiber-specific innervation in Drosophila embryos , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  J J Milde,et al.  Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways , 1995, The Journal of comparative neurology.

[72]  Gerd Bicker Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee , 1999, Microscopy research and technique.

[73]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[74]  Y. Jan,et al.  L‐glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. , 1976, The Journal of physiology.

[75]  N. Strausfeld,et al.  Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa , 2003, The Journal of comparative neurology.

[76]  A. Hofbauer,et al.  Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster , 1991, Cell and Tissue Research.

[77]  A. Büschges,et al.  Octopamine effects mimick state-dependent changes in a proprioceptive feedback system. , 1993, Journal of neurobiology.

[78]  R. Hardie Is histamine a neurotransmitter in insect photoreceptors? , 1987, Journal of Comparative Physiology A.

[79]  U. Homberg Neurotransmitters and neuropeptides in the brain of the locust , 2002, Microscopy research and technique.

[80]  H. Young,et al.  GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina , 1988, Brain Research.

[81]  A. S. French,et al.  Octopamine selectively modifies the slow component of sensory adaptation in an insect mechanoreceptor , 1992, Brain Research.

[82]  D. O'Malley,et al.  Co-release of acetylcholine and GABA by the starburst amacrine cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  R. Dingledine,et al.  Glutamate and Aspartate , 1999 .

[84]  Simon B. Laughlin,et al.  Coding Efficiency and Design in Visual Processing , 1989 .

[85]  E. Fuchs,et al.  Neuroactive compounds in the brain of the honeybee during imaginal life , 1989 .