Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries

Significant capacity losses are generally seen for batteries containing high-capacity lithium alloy forming anode materials such as silicon, tin and aluminium. These losses are generally ascribed to a combination of volume expansion effects and irreversible electrolyte reduction reactions. Here, it is shown, based on e.g. elemental analyses of cycled electrodes, that the capacity losses for tin nanorod and silicon composite electrodes in fact involve diffusion controlled trapping of lithium in the electrodes. While an analogous effect is also demonstrated for copper, nickel and titanium current collectors, boron-doped diamond is shown to function as an effective lithium diffusion barrier. The present findings indicate that the durability of lithium based batteries can be improved significantly via proper electrode design or regeneration of the used electrodes.

[1]  W. C. Maskell,et al.  Cycling Behavior of Thin Film LiAl Electrodes with Liquid and Solid Electrolytes , 1985 .

[2]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[3]  Lei Cao,et al.  Demonstrating the Feasibility of Al as Anode Current Collector in Li-Ion Batteries via In Situ Neutron Depth Profiling , 2016 .

[4]  Daniel M. Seo,et al.  Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries , 2015 .

[5]  B. Lucht,et al.  In Situ Measurement of Solid Electrolyte Interphase Evolution on Silicon Anodes Using Atomic Force Microscopy , 2016 .

[6]  A. Bordes,et al.  Multiscale Investigation of Silicon Anode Li Insertion Mechanisms by Time-of-Flight Secondary Ion Mass Spectrometer Imaging Performed on an In Situ Focused Ion Beam Cross Section , 2016 .

[7]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[8]  K. Edström,et al.  On the electrochemistry of tin oxide coated tin electrodes in lithium-ion batteries , 2015 .

[9]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[10]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[11]  Philippe Moreau,et al.  Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries. , 2016, ChemSusChem.

[12]  Jianming Zheng,et al.  Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges , 2015 .

[13]  L. Nyholm,et al.  Hybrid Energy Storage Devices Based on Monolithic Electrodes Containing Well-defined TiO2 Nanotube Size Gradients , 2015 .

[14]  S. Risse,et al.  Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity. , 2016, ACS nano.

[15]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[16]  W. Klemm,et al.  Zur Kenntnis des Systems Lithium-Kupfer , 1958 .

[17]  F. Béguin,et al.  Effect of electrochemical conditions on the performance worsening of Si/C composite anodes for lithium batteries , 2010 .

[18]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[19]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[20]  Stephen J. Harris,et al.  Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents , 2009 .

[21]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[22]  K. Jungjohann,et al.  Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy. , 2016, ACS nano.

[23]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[24]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[25]  Jaephil Cho,et al.  3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. , 2014, ACS nano.

[26]  Yun-Sung Lee,et al.  Research Progress on Negative Electrodes for Practical Li‐Ion Batteries: Beyond Carbonaceous Anodes , 2015 .

[27]  M. Itagaki,et al.  Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: Performance of electroplated Al film negative electrode , 2008 .

[28]  D. Aurbach,et al.  The Study of Surface Film Formation on Noble-Metal Electrodes in Alkyl Carbonates/Li Salt Solutions, Using Simultaneous in Situ AFM, EQCM, FTIR, and EIS , 1999 .

[29]  C. Grey,et al.  Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes. , 2016, Journal of the American Chemical Society.

[30]  K. Edström,et al.  On the origin of the capacity fading for aluminium negative electrodes in Li-ion batteries , 2014 .

[31]  Lin Xu,et al.  Nanowire electrodes for electrochemical energy storage devices. , 2014, Chemical reviews.

[32]  Diana Golodnitsky,et al.  Tissue-like Silicon Nanowires-Based Three-Dimensional Anodes for High-Capacity Lithium Ion Batteries. , 2015, Nano letters.

[33]  W. C. Maskell,et al.  Thin film lithium aluminium negative plate material , 1984 .

[34]  Ting Zhu,et al.  In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures , 2012 .

[35]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .

[36]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[37]  Chaodi Xu,et al.  Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries , 2015 .

[38]  K. Edström,et al.  The Buried Carbon/Solid Electrolyte Interphase in Li-ion Batteries Studied by Hard X-ray Photoelectron Spectroscopy , 2014 .

[39]  K. Edström,et al.  Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries : A Photoelectron Spectroscopy Study , 2013 .

[40]  C. Liang,et al.  Asymmetric Rate Behavior of Si Anodes for Lithium‐Ion Batteries: Ultrafast De‐Lithiation versus Sluggish Lithiation at High Current Densities , 2015 .

[41]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[42]  T. Yanagishita,et al.  Enlargement of surface area of Al by electrochemical insertion and deinsertion of Li , 2015 .