Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model

[1]  Alyssa C. Frazee,et al.  Polyester: Simulating RNA-Seq Datasets With Differential Transcript Expression , 2014, bioRxiv.

[2]  Christopher B. Burge,et al.  Methods for time series analysis of RNA-seq data with application to human Th17 cell differentiation , 2014, Bioinform..

[3]  Ana Conesa,et al.  Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series , 2014, Bioinform..

[4]  P. Dong,et al.  Emerging Therapeutic Biomarkers in Endometrial Cancer , 2013, BioMed research international.

[5]  Hongyu Zhao,et al.  Time Series Expression Analyses Using RNA-seq: A Statistical Approach , 2013, BioMed research international.

[6]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[7]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[8]  Hui Jiang,et al.  Statistical Modeling of RNA-Seq Data. , 2011, Statistical science : a review journal of the Institute of Mathematical Statistics.

[9]  B. Graveley The developmental transcriptome of Drosophila melanogaster , 2010, Nature.

[10]  E. Letouzé,et al.  Analysis of the copy number profiles of several tumor samples from the same patient reveals the successive steps in tumorigenesis , 2010, Genome Biology.

[11]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[12]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[13]  C. Elsik The pea aphid genome sequence brings theories of insect defense into question , 2010, Genome Biology.

[14]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[15]  Jun S. Liu,et al.  Identifying Differentially Expressed Genes in Time Course Microarray Data , 2009 .

[16]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[17]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[18]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[19]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[20]  I. Goodhead,et al.  Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution , 2008, Nature.

[21]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[22]  R. Tibshirani,et al.  On testing the significance of sets of genes , 2006, math/0610667.

[23]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Chong Gu,et al.  Generalized Nonparametric Mixed-Effect Models: Computation and Smoothing Parameter Selection , 2005 .

[25]  Chong Gu Model diagnostics for smoothing spline ANOVA models , 2004 .

[26]  Chong Gu Smoothing Spline Anova Models , 2002 .

[27]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[28]  Prof. Dr. José A. Campos-Ortega,et al.  The Embryonic Development of Drosophila melanogaster , 1997, Springer Berlin Heidelberg.

[29]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[30]  G. Wahba Spline Models for Observational Data , 1990 .

[31]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[32]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[33]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .