Limit laws for embedded trees: Applications to the integrated superBrownian excursion

We study three families of labeled plane trees. In all these trees, the root is labeled 0 and the labels of two adjacent nodes differ by 0,1, or −1.

[1]  Svante Janson,et al.  Left and Right Pathlengths in Random Binary Trees , 2006, Algorithmica.

[2]  Svante Janson,et al.  Convergence of Discrete Snakes , 2005 .

[3]  A. Mokkadem,et al.  Limit of normalized quadrangulations: The Brownian map , 2004, math/0403398.

[4]  Jean-François Marckert,et al.  The rotation correspondence is asymptotically a dilatation , 2004, Random Struct. Algorithms.

[5]  A. Mokkadem,et al.  States Spaces of the Snake and Its Tour—Convergence of the Discrete Snake , 2003 .

[6]  Jean-François Delmas,et al.  Computation of Moments for the Length of the OneDimensional ISE Support , 2003 .

[7]  Svante Janson,et al.  The Center of Mass of the ISE and the Wiener Index of Trees , 2003, math/0309284.

[8]  P. Francesco,et al.  Geodesic distance in planar graphs , 2003, cond-mat/0303272.

[9]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[10]  Alberto Del Lungo,et al.  Left ternary trees and non-separable rooted planar maps , 2000, Theor. Comput. Sci..

[11]  Gilles Schaeffer,et al.  A Bijective Census of Nonseparable Planar Maps , 1998, J. Comb. Theory, Ser. A.

[12]  Gordon Slade,et al.  The Scaling Limit of Lattice Trees in High Dimensions , 1998 .

[13]  Bernhard Gittenberger,et al.  On the profile of random trees , 1997, Random Struct. Algorithms.

[14]  Gordon Slade,et al.  Lattice trees and super-Brownian motion , 1997, Canadian Mathematical Bulletin.

[15]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[16]  David Aldous,et al.  Tree-based models for random distribution of mass , 1993 .

[17]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[18]  Sadao Sugitani Some properties for the measure-valued branching diffusion processes , 1989 .

[19]  M. Reimers One dimensional stochastic partial differential equations and the branching measure diffusion , 1989 .

[20]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[21]  T. Cacoullos,et al.  Exercises In Probability , 1988 .

[22]  N. Konno,et al.  Stochastic partial differential equations for some measure-valued diffusions , 1988 .

[23]  Julio R. Bastida Field Extensions and Galois Theory , 1984 .

[24]  Philippe Flajolet,et al.  The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..

[25]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[26]  Kai Lai Chung,et al.  Excursions in Brownian motion , 1976 .

[27]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.