Leveraging link pattern for entity-centric exploration over Linked Data

The increasing amount of Linked Data on the Web can be reused to facilitate numerous applications. One of the first steps is to explore these structured data to determine whether there is relevant information. Since an entity-centric model closely reflects the real world, it provides an intuitive way to explore Linked Data. However, large numbers of linked entities and high diversity of links between entities, often make it difficult for users to understand the overall structure, as well as find the entities of interest quickly for further exploration. In this paper, we present a link pattern discovery approach to facilitate entity exploration. Link patterns describe explicit and implicit relationships between entities and can be used to categorize linked entities. On top of link patterns, we construct a hierarchy to allow exploration of linked entities in a hierarchical multiscale fashion. To lighten users’ exploration burden further, we select top-k link patterns from hierarchy as navigation options. The proposed approach is implemented in a Linked Data browser called SView. We compare it with two conventional Linked Data browsers by conducting a task-based user study. The experiment results show that our approach provides effective support for entity exploration.

[1]  J. Bordat Calcul pratique du treillis de Galois d'une correspondance , 1986 .

[2]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[3]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[4]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[5]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[6]  Claudio Carpineto,et al.  Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO , 2004, J. Univers. Comput. Sci..

[7]  Marti A. Hearst,et al.  Nearly-Automated Metadata Hierarchy Creation , 2004, NAACL.

[8]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[9]  Eyal Oren,et al.  Extending Faceted Navigation for RDF Data , 2006, SEMWEB.

[10]  Marti A. Hearst Clustering versus faceted categories for information exploration , 2006, Commun. ACM.

[11]  Lydia B. Chilton,et al.  Tabulator: Exploring and Analyzing linked data on the Semantic Web , 2006 .

[12]  Lynda Hardman,et al.  /facet: A Browser for Heterogeneous Semantic Web Repositories , 2006, SEMWEB.

[13]  John G. Breslin,et al.  An Architecture to Discover and Query Decentralized RDF Data , 2007, SFSW.

[14]  Jürgen Umbrich,et al.  Towards a scalable search and query engine for the web , 2007, WWW '07.

[15]  C. Bizer,et al.  DBpedia Mobile : A Location-Aware Semantic Web Client , 2008 .

[16]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[17]  Peter W. Eklund,et al.  An Intelligent User Interface for Browsing and Searching MPEG-7 Images Using Concept Lattices , 2008, Int. J. Found. Comput. Sci..

[18]  Mark de Berg,et al.  Covering Many or Few Points with Unit Disks , 2006, Theory of Computing Systems.

[19]  Afra Pascual,et al.  Building a Usable and Accessible Semantic Web Interaction Platform , 2010, World Wide Web.

[20]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[21]  Simone Diniz Junqueira Barbosa,et al.  Experimenting with Explorator: a Direct Manipulation Generic RDF Browser and Querying Tool , 2009 .

[22]  David R. Karger,et al.  Parallax and Companion: Set-based Browsing for the Data Web , 2009 .

[23]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[24]  Sébastien Ferré,et al.  Camelis: a logical information system to organise and browse a collection of documents , 2009, Int. J. Gen. Syst..

[25]  Yuzhong Qu,et al.  Searching Linked Objects with Falcons: Approach, Implementation and Evaluation , 2009, Int. J. Semantic Web Inf. Syst..

[26]  Ravi Kumar,et al.  A characterization of online browsing behavior , 2010, WWW '10.

[27]  Stefan Decker,et al.  Sig.ma: Live views on the Web of Data , 2010, J. Web Semant..

[28]  Andreas Harth,et al.  VisiNav: A system for visual search and navigation on web data , 2010, J. Web Semant..

[29]  Ravi Kumar,et al.  Max-cover in map-reduce , 2010, WWW '10.

[30]  Thomas Ertl,et al.  Facet Graphs: Complex Semantic Querying Made Easy , 2010, ESWC.

[31]  Peter Mika,et al.  Ad-hoc object retrieval in the web of data , 2010, WWW '10.

[32]  Thomas Ertl,et al.  SemLens: visual analysis of semantic data with scatter plots and semantic lenses , 2011, I-Semantics '11.

[33]  Tom Heath,et al.  Linked Data: Evolving the Web into a Global Data Space , 2011, Linked Data.

[34]  Monica M. C. Schraefel,et al.  Connecting the Dots: A Multi-pivot Approach to Data Exploration , 2011, SEMWEB.

[35]  Radim Belohlávek,et al.  Selecting Important Concepts Using Weights , 2011, ICFCA.

[36]  Wolf-Tilo Balke,et al.  Conceptual views for entity-centric search: turning data into meaningful concepts , 2012, Computer Science - Research and Development.

[37]  James A. Thom,et al.  Evaluating Semantic Browsers for Consuming Linked Data , 2012, ADC.

[38]  Seán O'Riain,et al.  Querying Heterogeneous Datasets on the Linked Data Web: Challenges, Approaches, and Trends , 2012, IEEE Internet Computing.

[39]  Michael Gamon,et al.  Active objects: actions for entity-centric search , 2012, WWW.

[40]  Fabien L. Gandon,et al.  Survey of Linked Data Based Exploration Systems , 2014, IESD@ISWC.

[41]  George Papastefanatos,et al.  rdf: SynopsViz - A Framework for Hierarchical Linked Data Visual Exploration and Analysis , 2014, ESWC.

[42]  Timos K. Sellis,et al.  Exploration and Visualization in the Web of Big Linked Data: A Survey of the State of the Art , 2016, EDBT/ICDT Workshops.