Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding.

[1]  Harry F. Noller,et al.  Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements , 2014, Cell.

[2]  Vijay S Pande,et al.  Side-chain recognition and gating in the ribosome exit tunnel , 2008, Proceedings of the National Academy of Sciences.

[3]  H. Gohlke,et al.  Exploiting the Link between Protein Rigidity and Thermostability for Data‐Driven Protein Engineering , 2008 .

[4]  Frank Schluenzen,et al.  The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning , 2008, Proceedings of the National Academy of Sciences.

[5]  L. Lindahl,et al.  Effects on Translation Pausing of Alterations in Protein and RNA Components of the Ribosome Exit Tunnel , 2008, Journal of bacteriology.

[6]  Gregor Blaha,et al.  Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. , 2008, Journal of molecular biology.

[7]  Holger Gohlke,et al.  Analyzing the flexibility of RNA structures by constraint counting. , 2008, Biophysical journal.

[8]  Deping Wang,et al.  Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. , 2008, Journal of medicinal chemistry.

[9]  A. Mankin,et al.  Molecular mechanism of drug-dependent ribosome stalling. , 2008, Molecular cell.

[10]  Frank Schluenzen,et al.  Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. , 2008, Molecular cell.

[11]  Wolfgang Wintermeyer,et al.  Signal sequence–independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel , 2008, Nature Structural &Molecular Biology.

[12]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.

[13]  T. Steitz A structural understanding of the dynamic ribosome machine , 2008, Nature Reviews Molecular Cell Biology.

[14]  H. Noller,et al.  The ribosome in focus: new structures bring new insights. , 2007, Trends in biochemical sciences.

[15]  M. Selmer,et al.  Crystal structure of the ribosome recycling factor bound to the ribosome , 2007, Nature Structural &Molecular Biology.

[16]  J. Holton,et al.  Structural basis for aminoglycoside inhibition of bacterial ribosome recycling , 2007, Nature Structural &Molecular Biology.

[17]  Harry F Noller,et al.  Intersubunit movement is required for ribosomal translocation , 2007, Proceedings of the National Academy of Sciences.

[18]  A. Bashan,et al.  Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity , 2007, Proceedings of the National Academy of Sciences.

[19]  A. Yonath,et al.  Chemical parameters influencing fine-tuning in the binding of macrolide antibiotics to the ribosomal tunnel , 2007 .

[20]  J. Cate,et al.  Structural analysis of kasugamycin inhibition of translation , 2006, Nature Structural &Molecular Biology.

[21]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[22]  Daniel N. Wilson,et al.  The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation , 2006, Nature Structural &Molecular Biology.

[23]  Holger Gohlke,et al.  A natural coarse graining for simulating large biomolecular motion. , 2006, Biophysical journal.

[24]  R. Berisio,et al.  23S rRNA 2058A→G Alteration Mediates Ketolide Resistance in Combination with Deletion in L22 , 2006, Antimicrobial Agents and Chemotherapy.

[25]  Meera Sitharam,et al.  Modeling Virus Self-Assembly Pathways: Avoiding Dynamics Using Geometric Constraint Decomposition , 2006, J. Comput. Biol..

[26]  M Gerstein,et al.  The geometry of the ribosomal polypeptide exit tunnel. , 2006, Journal of molecular biology.

[27]  H. Bernstein,et al.  Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. , 2006, Molecular cell.

[28]  H. Gohlke,et al.  Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory , 2006, Proteins.

[29]  Joachim Frank,et al.  Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements. , 2006, Molecular cell.

[30]  Joachim Frank,et al.  Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps. , 2006, Annual review of biophysics and biomolecular structure.

[31]  J. Dresios,et al.  Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function , 2006, Molecular microbiology.

[32]  Guy Ziv,et al.  Ribosome exit tunnel can entropically stabilize α-helices , 2005 .

[33]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[34]  Jianli Lu,et al.  Folding zones inside the ribosomal exit tunnel , 2005, Nature Structural &Molecular Biology.

[35]  M. Thorpe,et al.  Constrained geometric simulation of diffusive motion in proteins , 2005, Physical biology.

[36]  W. Whiteley Counting out to the flexibility of molecules , 2005, Physical biology.

[37]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[38]  J. Poehlsgaard,et al.  The bacterial ribosome as a target for antibiotics , 2005, Nature Reviews Microbiology.

[39]  S. Joseph,et al.  Simulating movement of tRNA into the ribosome during decoding. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Bashan,et al.  Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Gregor Blaha,et al.  Structures of MLSBK Antibiotics Bound to Mutated Large Ribosomal Subunits Provide a Structural Explanation for Resistance , 2005, Cell.

[42]  R. Zarivach,et al.  23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A-->G. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Yonath,et al.  From peptide‐bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects , 2005, FEBS letters.

[44]  A. Yonath,et al.  Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin , 2004, Molecular microbiology.

[45]  Serdal Kirmizialtin,et al.  Translocation of a β-hairpin-forming peptide through a cylindrical tunnel , 2004 .

[46]  A. Bashan,et al.  Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. , 2004, Trends in biotechnology.

[47]  A. Bashan,et al.  Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. , 2004, Annual review of microbiology.

[48]  R. Jernigan,et al.  Global ribosome motions revealed with elastic network model. , 2004, Journal of structural biology.

[49]  Holger Gohlke,et al.  Change in protein flexibility upon complex formation: Analysis of Ras‐Raf using molecular dynamics and a molecular framework approach , 2004, Proteins.

[50]  T. Steitz,et al.  The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. , 2004, Journal of molecular biology.

[51]  F. Hartl,et al.  The dynamic tunnel , 2004, Nature Structural &Molecular Biology.

[52]  C. Dobson,et al.  Three-dimensional structures of translating ribosomes by Cryo-EM. , 2004, Molecular cell.

[53]  H. Bartels,et al.  Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin , 2004, BMC Biology.

[54]  Peter J McCormick,et al.  Nascent Membrane and Secretory Proteins Differ in FRET-Detected Folding Far inside the Ribosome and in Their Exposure to Ribosomal Proteins , 2004, Cell.

[55]  David E Draper,et al.  A guide to ions and RNA structure. , 2004, RNA.

[56]  Thomas A Steitz,et al.  Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. , 2003, Journal of molecular biology.

[57]  J. Frank,et al.  Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Berisio,et al.  Structural Insight into the Antibiotic Action of Telithromycin against Resistant Mutants , 2003, Journal of bacteriology.

[59]  M. S. Chapman,et al.  Study of the Structural Dynamics of the E. coli 70S Ribosome Using Real-Space Refinement , 2003, Cell.

[60]  Frank Schluenzen,et al.  Structural insight into the role of the ribosomal tunnel in cellular regulation , 2003, Nature Structural Biology.

[61]  M. Rodnina,et al.  The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. , 2003, RNA.

[62]  D. Ingber Tensegrity I. Cell structure and hierarchical systems biology , 2003, Journal of Cell Science.

[63]  R. Zarivach,et al.  Structural basis for the antibiotic activity of ketolides and azalides. , 2003, Structure.

[64]  Giuseppe Zanotti,et al.  Is tensegrity a unifying concept of protein folds? , 2003, FEBS letters.

[65]  Thomas A Steitz,et al.  The structural basis of large ribosomal subunit function. , 2002, Annual review of biochemistry.

[66]  I. Tanaka,et al.  Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex. , 2002, RNA.

[67]  N. Ban,et al.  L23 protein functions as a chaperone docking site on the ribosome , 2002, Nature.

[68]  Thomas A Steitz,et al.  Structural insights into peptide bond formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Poul Nissen,et al.  The structures of four macrolide antibiotics bound to the large ribosomal subunit. , 2002, Molecular cell.

[70]  Shameema F. Sarker,et al.  Critical Regions of secM That Control Its Translation and Secretion and Promote Secretion-Specific secA Regulation , 2002, Journal of bacteriology.

[71]  Leslie A Kuhn,et al.  Protein unfolding: Rigidity lost , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Koreaki Ito,et al.  The Ribosomal Exit Tunnel Functions as a Discriminating Gate , 2002, Cell.

[73]  M. Ehrenberg,et al.  Regulatory Nascent Peptides in the Ribosomal Tunnel , 2002, Cell.

[74]  T. Steitz,et al.  A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits , 2002, Nature Structural Biology.

[75]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[76]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[77]  D. Jacobs,et al.  Protein flexibility predictions using graph theory , 2001, Proteins.

[78]  J Frank,et al.  The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. , 2001, Molecular cell.

[79]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[80]  D. Jacobs,et al.  Protein flexibility and dynamics using constraint theory. , 2001, Journal of molecular graphics & modelling.

[81]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[82]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[83]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[84]  S. Liebman,et al.  Yeast ribosomal protein L24 affects the kinetics of protein synthesis and ribosomal protein L39 improves translational accuracy, while mutants lacking both remain viable. , 2000, Biochemistry.

[85]  A. Liljas,et al.  The crystal structure of ribosomal protein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. , 1998, Structure.

[86]  Donald J. Jacobs,et al.  Generic rigidity in three-dimensional bond-bending networks , 1998 .

[87]  L. Landweber,et al.  RNA editing missing in mitochondria. , 1997, RNA.

[88]  C. Spahn,et al.  Throwing a spanner in the works: antibiotics and the translation apparatus , 1996, Journal of Molecular Medicine.

[89]  Jacobs,et al.  Generic rigidity percolation: The pebble game. , 1995, Physical review letters.

[90]  R. Amils,et al.  Functional analysis of seven ribosomal systems from extremely halophilic archaea , 1993 .

[91]  R. Garrett,et al.  Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon Halobacterium halobium , 1991, Journal of bacteriology.

[92]  A. Yonath RIBOSOMAL CRYSTALLOGRAPHY: PEPTIDE BOND FORMATION, CHAPERONE ASSISTANCE, AND ANTIBIOTICS INACTIVATION , 2007 .

[93]  A. Yonath Ribosomal crystallography: peptide bond formation, chaperone assistance and antibiotics activity. , 2005, Molecules and cells.

[94]  Serdal Kirmizialtin,et al.  Translocation of a beta-hairpin-forming peptide through a cylindrical tunnel. , 2004, The Journal of chemical physics.

[95]  Frank Schluenzen,et al.  Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. , 2003, Molecular cell.