Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains

[1]  W. Ko,et al.  Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms , 2019, Front. Pharmacol..

[2]  Kwang-sun Kim,et al.  Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations , 2019, Microorganisms.

[3]  M. Martins,et al.  Impact of nanosystems in Staphylococcus aureus biofilms treatment , 2019, FEMS microbiology reviews.

[4]  M. Vallet‐Regí,et al.  Nanomaterials as Promising Alternative in the Infection Treatment , 2019, International journal of molecular sciences.

[5]  Hyun-Jong Cho,et al.  Recent Progress in the Development of Poly(lactic-co-glycolic acid)-Based Nanostructures for Cancer Imaging and Therapy , 2019, Pharmaceutics.

[6]  P. Liu,et al.  Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing , 2019, Chinese Journal of Polymer Science.

[7]  S. R. Pinnapireddy,et al.  Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. , 2019, Colloids and surfaces. B, Biointerfaces.

[8]  Marc Schneider,et al.  Nano spray dried antibacterial coatings for dental implants , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[9]  R. Mishra,et al.  Formulation development and in vitro evaluation of gentamicin sulfate-loaded PLGA nanoparticles based film for the treatment of surgical site infection by Box–Behnken design , 2019, Drug development and industrial pharmacy.

[10]  J. Sousa,et al.  Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. , 2019, International journal of pharmaceutics.

[11]  M. De Luca,et al.  A New Generation of Dihydropyridine Calcium Channel Blockers: Photostabilization of Liquid Formulations Using Nonionic Surfactants , 2019, Pharmaceutics.

[12]  Solmaz Maleki Dizaj,et al.  Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles , 2018, Journal of drug targeting.

[13]  Z. Abdeen,et al.  Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis , 2018, Drug Delivery and Translational Research.

[14]  Daniela Droppa-Almeida,et al.  Development and characterization of PLGA nanoparticles containing antibiotics , 2018, Journal of Nanoparticle Research.

[15]  Yanbin Li,et al.  Selection of aptamers against pathogenic bacteria and their diagnostics application , 2018, World journal of microbiology & biotechnology.

[16]  M. S. Morehead,et al.  Emergence of Global Antibiotic Resistance. , 2018, Primary care.

[17]  W. Duan,et al.  Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers , 2018, Advanced drug delivery reviews.

[18]  Chen-Hsiang Lee,et al.  Impact of teicoplanin maintenance dose and MIC values on the clinical outcomes of patients treated for methicillin-resistant Staphylococcus aureus bacteremia , 2018, Infection and drug resistance.

[19]  A. R. Fernandes,et al.  Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans” , 2018, Front. Microbiol..

[20]  M. Bezuidenhout,et al.  Antibacterial Activity of Vancomycin Encapsulated in Poly(DL-lactide-co-glycolide) Nanoparticles Using Electrospraying , 2018, Probiotics and Antimicrobial Proteins.

[21]  Yoon Yeo,et al.  Particle engineering for intracellular delivery of vancomycin to methicillin‐resistant Staphylococcus aureus (MRSA)‐infected macrophages , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[22]  Lingeng Lu,et al.  Artificial human antigen‐presenting cells are superior to dendritic cells at inducing cytotoxic T‐cell responses , 2017, Immunology.

[23]  A. Kundu,et al.  Aptamer‐functionalized hybrid nanoparticle for the treatment of breast cancer , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[24]  S. Mariathasan,et al.  Antibody-Antibiotic Conjugates: A Novel Therapeutic Platform against Bacterial Infections. , 2017, Trends in molecular medicine.

[25]  G. Bayramoglu,et al.  Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. , 2016, Biosensors & bioelectronics.

[26]  Yhu-Chering Huang,et al.  Vancomycin, teicoplanin, daptomycin, and linezolid MIC creep in methicillin-resistant Staphylococcus aureus is associated with clonality , 2016, Medicine.

[27]  V. C. Ozalp,et al.  Aptamers: molecular tools for medical diagnosis. , 2015, Current topics in medicinal chemistry.

[28]  G. Bayramoglu,et al.  Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. , 2015, Chemical communications.

[29]  Yan Lian,et al.  A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. , 2015, Biosensors & bioelectronics.

[30]  Zhouping Wang,et al.  Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles , 2014, Microchimica Acta.

[31]  Pan‐Chyr Yang,et al.  Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles , 2013, Scientific Reports.

[32]  V. C. Özalp,et al.  Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. , 2013, Future microbiology.

[33]  H. Valizadeh,et al.  The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. , 2013, Colloids and surfaces. B, Biointerfaces.

[34]  C. Baron A novel strategy to target bacterial virulence. , 2013, Future microbiology.

[35]  V. Préat,et al.  PLGA-based nanoparticles: an overview of biomedical applications. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[36]  Samir Mitragotri,et al.  Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. , 2010, Current pharmaceutical design.

[37]  A. Renzoni,et al.  Underestimation of Vancomycin and Teicoplanin MICs by Broth Microdilution Leads to Underdetection of Glycopeptide-Intermediate Isolates of Staphylococcus aureus , 2010, Antimicrobial Agents and Chemotherapy.

[38]  B. Shen,et al.  Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus , 2009, Nucleic acids research.

[39]  Ioanis Katakis,et al.  Aptamers: molecular tools for analytical applications , 2008, Analytical and bioanalytical chemistry.

[40]  Jie Shen,et al.  Quantification of Teicoplanin in Human Plasma by Liquid Chromatography with Ultraviolet Detection , 2006 .

[41]  Hong-Zhuan Chen,et al.  In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[42]  P. Taylor,et al.  Methicillin Resistance in Staphylococcus Aureus: Mechanisms and Modulation , 2002, Science progress.

[43]  Mary Jane Ferraro,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard , 2000 .

[44]  K. Rolston,et al.  In-vitro activity of ramoplanin (a novel lipoglycopeptide), vancomycin, and teicoplanin against gram-positive clinical isolates from cancer patients. , 1996, The Journal of antimicrobial chemotherapy.