Inversive pseudorandom number generators: concepts, results and links

Stochastic simulation requires a reliable source of randomness. Inversive methods are an interesting and very promising new approach to produce uniform pseudorandom numbers. In this paper, we present evidence that these methods are an important contribution to our toolbox. We survey the outstanding performance of inversive pseudorandom number generators in theoretical and empirical tests, in comparison to linear generators. In addition, this paper contains tables of parameters to implement inversive congruential generators.

[1]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[2]  Jürgen Eichenauer-Herrmann,et al.  Compound inversive congruential pseudorandom numbers: an average-case analysis , 1996, Math. Comput..

[3]  G. S. Fishman,et al.  A Statistical Evaluation of Multiplicative Congruential Random Number Generators with Modulus 231 — 1 , 1982 .

[4]  Hannes Leeb,et al.  On the Digit Test , 1995 .

[5]  Harald Niederreiter Some linear and nonlinear methods for pseudorandom number generation , 1995, WSC '95.

[6]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[7]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[8]  J. Eichenauer-Herrmann Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .

[9]  Jürgen Eichenauer-Herrmann,et al.  Compound nonlinear congruential pseudorandom numbers , 1994 .

[10]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[11]  L. R. Moore,et al.  An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$ , 1986 .

[12]  Jürgen Eichenauer-Herrmann,et al.  Inversive congruential pseudorandom numbers avoid the planes , 1991 .

[13]  Pierre L'Ecuyer,et al.  Uniform random number generation , 1994, Ann. Oper. Res..

[14]  Pierre L'Ecuyer,et al.  Testing random number generators , 1992, WSC '92.

[15]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[16]  Harald Niederreiter,et al.  On a new class of pseudorandom numbers for simulation methods , 1994 .

[17]  Gary L. Mullen,et al.  Finite fields, coding theory, and advances in communications and computing , 1993 .

[18]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[19]  A. De Matteis,et al.  Long-range correlations in linear and nonlinear random number generators , 1990, Parallel Comput..

[20]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[21]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[22]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[23]  Jürgen Eichenauer-Herrmann,et al.  Improved lower bounds for the discrepancy of inversive congruential pseudorandom numbers , 1994 .

[24]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[25]  Ernst Stadlober,et al.  Sampling from Discrete and Continuous Distributions with C-Rand , 1992 .

[26]  William F. Eddy Random number generators for parallel processors , 1990 .

[27]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[28]  Harald Niederreiter,et al.  New Developments in Uniform Pseudorandom Number and Vector Generation , 1995 .

[29]  Harald Niederreiter,et al.  Bounds for exponential sums and their applications to pseudorandom numbers , 1994 .