The virtual K-theory of Quot schemes of surfaces

Abstract We study virtual invariants of Quot schemes parametrizing quotients of dimension at most 1 of the trivial sheaf of rank N on nonsingular projective surfaces. We conjecture that the generating series of virtual K -theoretic invariants are given by rational functions. We prove rationality for several geometries including punctual quotients for all surfaces and dimension 1 quotients for surfaces X with p g > 0 . We also show that the generating series of virtual cobordism classes can be irrational. Given a K -theory class on X of rank r , we associate natural series of virtual Segre and Verlinde numbers. We show that the Segre and Verlinde series match in the following cases: • [(i)] Quot schemes of dimension 0 quotients, • [(ii)] Hilbert schemes of points and curves over surfaces with p g > 0 , • [(iii)] Quot schemes of minimal elliptic surfaces for quotients supported on fiber classes. Moreover, for punctual quotients of the trivial sheaf of rank N , we prove a new symmetry of the Segre/Verlinde series exchanging r and N . The Segre/Verlinde statements have analogues for punctual Quot schemes over curves.

[1]  R. Pandharipande,et al.  Descendent theory for stable pairs on toric 3-folds , 2010, 1011.4054.

[2]  Richard P. Thomas,et al.  Modern Geometry: A Celebration of the Work of Simon Donaldson , 2018 .

[3]  C. Voisin Segre classes of tautological bundles on Hilbert schemes of surfaces , 2017, Algebraic Geometry.

[4]  Richard P. Thomas,et al.  The 3-fold vertex via stable pairs , 2007, 0709.3823.

[5]  Alina Marian,et al.  The level-rank duality for non-abelian theta functions , 2007 .

[6]  Jian Zhou K-Theory of Hilbert Schemes as a Formal Quantum Field Theory , 2018, 1803.06080.

[7]  R. Pandharipande,et al.  Gromov–Witten theory and Donaldson–Thomas theory, I , 2003, Compositio Mathematica.

[8]  Richard P. Thomas,et al.  Curve counting via stable pairs in the derived category , 2007, 0707.2348.

[9]  Yinbang Lin MODULI SPACES OF STABLE PAIRS , 2015, 1512.03091.

[10]  C. Okonek,et al.  Poincaré invariants , 2007 .

[11]  Drew Johnson Universal Series for Hilbert Schemes and Strange Duality , 2017, 1708.05743.

[12]  Prakash Belkale,et al.  The strange duality conjecture for generic curves , 2006, math/0602018.

[13]  A. Smirnov Rationality of capped descendent vertex in $K$-theory , 2016, 1612.01048.

[14]  Gromov-Witten invariants in algebraic geometry , 1996, alg-geom/9601011.

[15]  N. Arbesfeld K-theoretic Donaldson-Thomas theory and the Hilbert scheme of points on a surface , 2019, 1905.04567.

[16]  Rahul Pandharipande,et al.  Higher rank Segre integrals over the Hilbert scheme of points , 2017, Journal of the European Mathematical Society.

[17]  G. Ellingsrud,et al.  On the Cobordism Class of the Hilbert Scheme of a Surface , 1999, math/9904095.

[18]  Woonam Lim Virtual $\chi_{-y}$-genera of Quot schemes on surfaces , 2020 .

[19]  Luca Scala Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles : perturbations of the metric in Seiberg-Witten equations , 2007, 0710.3072.

[20]  C. Okonek,et al.  Poincar´ e invariants , 2007 .

[21]  Woonam Lim Virtual χ−y ‐genera of Quot schemes on surfaces , 2020, Journal of the London Mathematical Society.

[22]  M. Lehn Chern classes of tautological sheaves on Hilbert schemes of points on surfaces , 1998, math/9803091.

[23]  F. Qu Virtual pullbacks in $K$-theory , 2016, 1608.02524.

[24]  A. Sokal A ridiculously simple and explicit implicit function theorem , 2009, 0902.0069.

[25]  A. Marian,et al.  Virtual intersections on the $\mathrm{Quot}$ scheme and Vafa-Intriligator formulas , 2007 .

[26]  R. Pandharipande,et al.  Descendents on local curves: rationality , 2010, Compositio Mathematica.

[27]  Y.-P. Lee Quantum $K$-theory, I: Foundations , 2001, math/0105014.

[28]  A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations , 1998, math/9806111.

[29]  B. Fantechi,et al.  Riemann-Roch theorems and elliptic genus for virtually smooth schemes , 2007, 0706.0988.

[30]  Junliang Shen,et al.  Cobordism invariants of the moduli space of stable pairs , 2014, J. Lond. Math. Soc..

[31]  R. Pandharipande,et al.  Localization of virtual classes , 1997, alg-geom/9708001.

[32]  Ira M. Gessel,et al.  A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.

[33]  Aritra Ghosh,et al.  Effect of dark energy on the microstructures of black holes in AdS spacetimes , 2020 .

[34]  Andreas Krug Tensor products of tautological bundles under the Bridgeland–King–Reid–Haiman equivalence , 2012, 1211.1640.

[35]  Gentiana Danila Sections de la puissance tensorielle du fibré tautologique sur le schéma de Hilbert des points d'une surface , 2007 .

[36]  R. Pandharipande,et al.  Segre classes and Hilbert schemes of points , 2015, 1507.00688.

[37]  Virtual fundamental classes via dg-manifolds , 2007, math/0703214.

[38]  R. Pandharipande,et al.  The combinatorics of Lehn's conjecture , 2017, Journal of the Mathematical Society of Japan.