Amorphous SiOx nanowires catalyzed by metallic Ge for optoelectronic applications

[1]  S. Lochab,et al.  Synthesis and luminescence studies of CdSrS nanostructures , 2011 .

[2]  J. Zou,et al.  Sulfur-doped gallium phosphide nanowires and their optoelectronic properties , 2010, Nanotechnology.

[3]  Zhigang Chen,et al.  Metallic and ionic Fe induced growth of Si-SiOx core-shell nanowires , 2010 .

[4]  J. Zou,et al.  ZnS Branched Architectures as Optoelectronic Devices and Field Emitters , 2010, Advanced materials.

[5]  J. Zou,et al.  Wurtzite P-Doped GaN Triangular Microtubes as Field Emitters , 2010 .

[6]  Yong Wang,et al.  Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots. , 2010, Nature materials.

[7]  Sean C. Smith,et al.  Oxygen vacancy induced structural variations of exfoliated monolayer MnO2 sheets , 2010 .

[8]  K. Ryan,et al.  Metal surface nucleated supercritical fluid–solid–solid growth of Si and Ge/SiOx core–shell nanowires , 2010 .

[9]  N. Fukata Impurity Doping in Silicon Nanowires , 2009 .

[10]  Zhiping Zhou,et al.  Preparation and photoluminescence of high density SiOx nanowires with Fe3O4 nanoparticles catalyst , 2009 .

[11]  Wenjie Mai,et al.  Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. , 2008, Journal of the American Chemical Society.

[12]  J. Zou,et al.  Growth, Cathodoluminescence and Field Emission of ZnS Tetrapod Tree‐like Heterostructures , 2008 .

[13]  C. Yoon,et al.  Amorphous Silicon Dioxide Nanowire Array Synthesized via Carbonization of Polyimide Thin Film , 2008 .

[14]  J. Zou,et al.  Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type dependence and structure model , 2008 .

[15]  Quantum-confined and tunable optical emission from sub-10-nm silicon oxide nanowires in aqueous suspension , 2007 .

[16]  Igor Aharonovich,et al.  Growth mechanisms of amorphous SiOx nanowires , 2007 .

[17]  T. Xiao,et al.  Growth model of lantern-like amorphous silicon oxide nanowires , 2007 .

[18]  Hyoun-woo Kim,et al.  Helical nanostructures of SiOx synthesized through the heating of Co-coated substrates , 2007 .

[19]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[20]  Shekhar Bhansali,et al.  Selective growth of silica nanowires in silicon catalysed by Pt thin film , 2006, Nanotechnology.

[21]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[22]  L. Chan,et al.  Mechanism of solid-liquid-solid on the silicon oxide nanowire growth , 2006 .

[23]  A. Dong,et al.  Iron-assisted vapor-phase hydrothermal method: a low-temperature approach to synthesize blue light emissive SiOx nanowires with single-crystal structure of P2(1)2(1)2. , 2006, Journal of the American Chemical Society.

[24]  Bodo Fuhrmann,et al.  Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. , 2005, Nano letters.

[25]  L. J. Chen,et al.  Formation and evolution of self-assembled crystalline Si nanorings on (001)Si mediated by Au nanodots , 2005 .

[26]  G. Meng,et al.  Reversible blue light emission from self-assembled silica nanocords , 2005 .

[27]  Y. Zhao,et al.  Carbon-assisted growth of SiOx nanowires , 2004 .

[28]  J. L. Elechiguerra,et al.  Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst , 2004, Microscopy and Microanalysis.

[29]  Chang Hae Kim,et al.  Application of strontium silicate yellow phosphor for white light-emitting diodes , 2004 .

[30]  D. Su,et al.  Silicide formation on a Pt/SiO2 model catalyst studied by TEM, EELS and EDXS , 2003 .

[31]  Y. Xing,et al.  Silicon nanowires grown from Au-coated Si substrate , 2003 .

[32]  Shui-Tong Lee,et al.  A simple large-scale synthesis of very long aligned silica nanowires , 2003 .

[33]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[34]  Peidong Yang,et al.  Synthesis of Ultra‐Long and Highly Oriented Silicon Oxide Nanowires from Liquid Alloys , 2002 .

[35]  Kang L. Wang,et al.  Alloying, elemental enrichment, and interdiffusion during the growth of Ge(Si)/Si(001) quantum dots , 2002 .

[36]  J. S. Fu,et al.  Effects of Si, Ge and Ar ion-implantation on EL from Au/Si-rich SiO2/p-Si structure , 2001 .

[37]  Kang L. Wang,et al.  Ge/Si interdiffusion in the GeSi dots and wetting layers , 2001 .

[38]  A. Yakimov,et al.  Interlevel Ge/Si quantum dot infrared photodetector , 2001 .

[39]  Kang L. Wang,et al.  Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si(001) , 2001 .

[40]  Xingcai Wu,et al.  Preparation and photoluminescence properties of amorphous silica nanowires , 2001 .

[41]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[42]  Jun Xu,et al.  Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism , 2000 .

[43]  Wei Qian,et al.  Amorphous silica nanowires: Intensive blue light emitters , 1998 .

[44]  D. Fleetwood,et al.  Point defect generation during high temperature annealing of the Si‐SiO2 interface , 1993 .

[45]  Nakamura,et al.  Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation. , 1992, Physical review. B, Condensed matter.

[46]  Yasuhiro Shiraki,et al.  Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE , 1986 .

[47]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .