Numerical Methods for Bayesian Inference in Hilbert Spaces
暂无分享,去创建一个
[1] Albert Cohen,et al. Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.
[2] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[3] D. Krige. A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .
[4] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[5] John F. Pickens,et al. Ground-water flow modeling of the Culebra dolomite , 1990 .
[6] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[7] Robert Schaback,et al. Interpolation of spatial data – A stochastic or a deterministic problem? , 2013, European Journal of Applied Mathematics.
[8] Will Light,et al. Approximation Theory in Tensor Product Spaces , 1985 .
[9] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[10] Omar M. Knio,et al. Coordinate Transformation and Polynomial Chaos for the Bayesian Inference of a Gaussian Process with Parametrized Prior Covariance Function , 2015, 1501.03323.
[11] B. Carlin,et al. Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .
[12] Christoph Schwab,et al. N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs , 2014 .
[13] A. Gelman,et al. Adaptively Scaling the Metropolis Algorithm Using Expected Squared Jumped Distance , 2007 .
[14] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[15] N. Wiener. The Homogeneous Chaos , 1938 .
[16] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[17] R. Baierlein. Probability Theory: The Logic of Science , 2004 .
[18] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[19] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[20] Alexandros Beskos,et al. Asymptotic analysis of the random walk Metropolis algorithm on ridged densities , 2015, The Annals of Applied Probability.
[21] A. Stuart,et al. ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.
[22] Non-asymptotic mixing of the MALA algorithm August 20 , 2010 , 2010 .
[23] A. Stuart,et al. Ensemble Kalman methods for inverse problems , 2012, 1209.2736.
[24] Andrew M. Stuart,et al. Evaluating Data Assimilation Algorithms , 2011, ArXiv.
[25] M. Rao. Conditional measures and applications , 1993 .
[26] Jens L. Eftang,et al. Reduced basis methods for parametrized partial differential equations , 2011 .
[27] W. H. Chung,et al. 5. Stochastic Processes and Stochastic Calculus , 2008 .
[28] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[29] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[30] Ilse C. F. Ipsen,et al. Randomized matrix-free trace and log-determinant estimators , 2016, Numerische Mathematik.
[31] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[32] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[33] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[34] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[35] H. Bandemer,et al. Mathematics of Uncertainty: Ideas, Methods, Application Problems (Studies in Fuzziness and Soft Computing) , 2006 .
[36] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[37] Hermann G. Matthies,et al. Parameter Identification in a Probabilistic Setting , 2012, ArXiv.
[38] Mario Ullrich,et al. Positivity of hit-and-run and related algorithms , 2012, 1212.4512.
[39] C. J. Gittelson. STOCHASTIC GALERKIN DISCRETIZATION OF THE LOG-NORMAL ISOTROPIC DIFFUSION PROBLEM , 2010 .
[40] L. Pratelli,et al. Almost sure weak convergence of random probability measures , 2006 .
[41] Andrew M. Stuart,et al. Geometric MCMC for infinite-dimensional inverse problems , 2016, J. Comput. Phys..
[42] E. Hille,et al. Contributions to the theory of Hermitian series , 1939 .
[43] Matjaž Omladič,et al. Spectrum of the product of operators , 1988 .
[44] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[45] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[46] Charles J. Geyer,et al. Introduction to Markov Chain Monte Carlo , 2011 .
[47] Marco A. Iglesias,et al. Evaluation of Gaussian approximations for data assimilation in reservoir models , 2012, Computational Geosciences.
[48] R. Adler. The Geometry of Random Fields , 2009 .
[49] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..
[50] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[51] Oliver G. Ernst,et al. Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables - with Application to Lognormal Elliptic Diffusion Problems , 2016 .
[52] Gideon Simpson,et al. Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions , 2014, SIAM J. Sci. Comput..
[53] J. Potthoff. Sample properties of random fields III : Differentiability , 2010 .
[54] Yevgeniy Kovchegov,et al. A class of Markov chains with no spectral gap , 2011, 1109.6050.
[55] Gareth Roberts,et al. Optimal scalings for local Metropolis--Hastings chains on nonproduct targets in high dimensions , 2009, 0908.0865.
[56] A. Stuart,et al. MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.
[57] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[58] Giuseppe Da Prato,et al. Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .
[59] Dan Simon,et al. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .
[60] A. M. Stuart,et al. Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.
[61] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[62] A. Mandelbaum,et al. Linear estimators and measurable linear transformations on a Hilbert space , 1984 .
[63] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[64] Hamidou Tembine,et al. Deterministic Mean-Field Ensemble Kalman Filtering , 2014, SIAM J. Sci. Comput..
[65] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[66] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[67] Hermann G. Matthies,et al. A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements , 2012 .
[68] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[69] S. Cambanis,et al. Gaussian Processes and Gaussian Measures , 1972 .
[70] G. Prato. An Introduction to Infinite-Dimensional Analysis , 2006 .
[71] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[72] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[73] R. Freeze. A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous media , 1975 .
[74] D. Rudolf,et al. Explicit error bounds for Markov chain Monte Carlo , 2011, 1108.3201.
[75] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[76] Eileen Simkiss. Weighing the Odds , 1950, Postgraduate medical journal.
[77] A. Stuart,et al. Sampling the posterior: An approach to non-Gaussian data assimilation , 2007 .
[78] A. M. Stuart,et al. Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems , 2016, SIAM/ASA J. Uncertain. Quantification.
[79] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[80] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[81] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[82] Julia Charrier,et al. Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..
[83] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[84] Oliver G. Ernst,et al. Stochastic Collocation for Elliptic PDEs with Random Data: The Lognormal Case , 2014 .
[85] F. Smithies. Linear Operators , 2019, Nature.
[86] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[87] A. Stordal,et al. Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter , 2011 .
[88] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[89] Kody J. H. Law. Proposals which speed up function-space MCMC , 2014, J. Comput. Appl. Math..
[90] René L. Schilling. Measures, Integrals and Martingales: Martingales , 2005 .
[91] Ralph C. Smith,et al. Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .
[92] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[93] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations , 1963 .
[94] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[95] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[96] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[97] Michael Oberguggenberger,et al. The mathematics of uncertainty: models, methods and interpretations , 2005 .
[98] J. Mandel,et al. On the convergence of the ensemble Kalman filter , 2009, Applications of mathematics.
[99] E. Ullmann. Solution strategies for stochastic finite element discretizations , 2008 .
[100] F. Gland,et al. Large sample asymptotics for the ensemble Kalman filter , 2009 .
[101] Albert Cohen,et al. Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients , 2015, 1509.07050.
[102] Peter D. Hoff,et al. A First Course in Bayesian Statistical Methods , 2009 .
[103] Daniel Rudolf,et al. On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..
[104] J. Boyd. The rate of convergence of Hermite function series , 1980 .
[105] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[106] S. Varadhan,et al. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .
[107] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[108] G. Evensen,et al. An ensemble Kalman smoother for nonlinear dynamics , 2000 .
[109] Achim Klenke,et al. Probability theory - a comprehensive course , 2008, Universitext.
[110] Hans-Jörg Starkloff,et al. ON THE CONVERGENCE OF THE STOCHASTIC GALERKIN METHOD FOR RANDOM ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 2013 .
[111] Oliver G. Ernst,et al. Analysis of the Ensemble and Polynomial Chaos Kalman Filters in Bayesian Inverse Problems , 2015, SIAM/ASA J. Uncertain. Quantification.
[112] John P. Boyd,et al. Asymptotic coefficients of hermite function series , 1984 .
[113] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[114] W. Hackbusch,et al. Hierarchical Matrices: Algorithms and Analysis , 2015 .
[115] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[116] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[117] R. Douc,et al. Practical drift conditions for subgeometric rates of convergence , 2004, math/0407122.
[118] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[119] Anthony Lee,et al. Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation , 2012, 1210.6703.
[120] José M. Bernardo,et al. Bayesian Statistics , 2011, International Encyclopedia of Statistical Science.
[121] A. Sokal,et al. Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .
[122] A. P. Dawid,et al. Regression and Classification Using Gaussian Process Priors , 2009 .
[123] R. C. Gilbert. Introduction to Hilbert Space (S. K. Berberian) , 1963 .
[124] Hermann G. Matthies,et al. Sampling-free linear Bayesian update of polynomial chaos representations , 2012, J. Comput. Phys..
[125] W. J. Padgett,et al. Strong laws of large numbers for normed linear spaces , 1973 .
[126] Kung-Sik Chan,et al. Asymptotic Efficiency of the Sample Mean in Markov Chain Monte Carlo Schemes , 1996 .
[127] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[128] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[129] Juan Galvis,et al. Approximating Infinity-Dimensional Stochastic Darcy's Equations without Uniform Ellipticity , 2009, SIAM J. Numer. Anal..
[130] Mark A. Girolami,et al. Emulation of higher-order tensors in manifold Monte Carlo methods for Bayesian Inverse Problems , 2015, J. Comput. Phys..
[131] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[132] A. Debussche,et al. Weak truncation error estimates for elliptic PDEs with lognormal coefficients , 2013 .
[133] V. Bogachev. Gaussian Measures on a , 2022 .
[134] T. J. Dodwell,et al. A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.
[135] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[136] Henning Omre,et al. The Ensemble Kalman Filter and Related Filters , 2010 .
[137] Colin Fox,et al. Efficiency and computability of MCMC with Langevin, Hamiltonian, and other matrix-splitting proposals , 2015, 1501.03150.
[138] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[139] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[140] Tiangang Cui,et al. Optimal Low-rank Approximations of Bayesian Linear Inverse Problems , 2014, SIAM J. Sci. Comput..
[141] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[142] Oliver G. Ernst,et al. Bayesian Inverse Problems and Kalman Filters , 2014 .
[143] A. Stuart,et al. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.
[144] Andrew M. Stuart,et al. Analysis of the Ensemble Kalman Filter for Inverse Problems , 2016, SIAM J. Numer. Anal..
[145] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[146] Nicola Stone,et al. Gaussian Process Emulators for Uncertainty Analysis in Groundwater Flow , 2011 .
[147] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[148] M. Burger,et al. Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators , 2014, 1402.5297.
[149] Roger Ghanem,et al. Characterization of reservoir simulation models using a polynomial chaos‐based ensemble Kalman filter , 2009 .
[150] Adrian Sandu,et al. A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems , 2010 .
[151] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[152] Roger Ghanem,et al. Robust System Identification of Strongly Non-linear Dynamics Using a Polynomial Chaos-Based Sequential Data Assimilation Technique , 2007 .
[153] Martin Hairer,et al. An Introduction to Stochastic PDEs , 2009, 0907.4178.
[154] Elisabeth Ullmann,et al. Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods , 2013, 1312.6047.
[155] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[156] Jerzy Zabczyk,et al. Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach , 2007 .
[157] C. R. Dietrich,et al. Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..
[158] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[159] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[160] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[161] Jinglai Li,et al. On an adaptive preconditioned Crank-Nicolson MCMC algorithm for infinite dimensional Bayesian inference , 2017, J. Comput. Phys..
[162] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[163] S. Lakshmivarahan,et al. Dynamic Data Assimilation: Index , 2006 .
[164] G. Evensen. The ensemble Kalman filter for combined state and parameter estimation , 2009, IEEE Control Systems.
[165] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[166] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[167] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[168] Samuel Livingstone,et al. Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance , 2015 .
[169] Catherine E. Powell,et al. An Introduction to Computational Stochastic PDEs , 2014 .