Apophyllite (001) surface alteration in aqueous solutions studied by HAFM

[1]  C. Eggleston,et al.  Dissolution kinetics of magnesite in acidic aqueous solution: a hydrothermal atomic force microscopy study assessing step kinetics and dissolution flux , 2002 .

[2]  J. M. Astilleros,et al.  Molecular-scale surface processes during the growth of calcite in the presence of manganese , 2002 .

[3]  K. Knauss,et al.  Dissolution kinetics of magnesite in acidic aqueous solution, a hydrothermal atomic force microscopy (HAFM) study: Step orientation and kink dynamics , 2001 .

[4]  A. Godelitsas,et al.  Investigation of Fluorine Distribution on the Surface of Acid‐Treated Apatite Single Crystals using Nuclear Resonant Reaction Analysis , 2001 .

[5]  L. Charlet,et al.  In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms , 2001 .

[6]  E. Altshuler,et al.  Time evolution of a natural clinoptilolite in aqueous medium: conductivity and pH experiments , 2000 .

[7]  L. Charlet,et al.  The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy , 2000 .

[8]  Ryoji Shiraki,et al.  Dissolution Kinetics of Calcite in 0.1 M NaCl Solution at Room Temperature: An Atomic Force Microscopic (AFM) Study , 2000 .

[9]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure Part II: kinetic study , 1999 .

[10]  M. Hochella,et al.  Quantitative assessment of reactive surface area of phlogopite during acid dissolution , 1999, Science.

[11]  K. Rosso,et al.  New Directions in Mineral Surface Geochemical Research Using Scanning Probe Microscopes , 1999 .

[12]  A. Putnis,et al.  Mineral precipitation and dissolution in aqueous solution: in-situ microscopic observations on barite (001) with atomic force microscopy , 1998 .

[13]  K. Knauss,et al.  A hydrothermal atomic force microscope for imaging in aqueous solution up to 150 °C , 1998 .

[14]  Guntram Jordan,et al.  Dissolution Rates of Calcite (104) Obtained by Scanning Force Microscopy: Microtopography-Based Dissolution Kinetics on Surfaces with Anisotropic Step Velocities , 1998 .

[15]  A. Yamazaki,et al.  Preparation and Properties of Layered Silica and Layered Alumino-Silica Hydrate from Natural Apophyllite , 1998 .

[16]  L. Chou,et al.  Mechanism of kaolinite dissolution at room temperature and pressure , 1998 .

[17]  P. Dove,et al.  Surface site-specific interactions of aspartate with calcite during dissolution: Implications for biomineralization , 1997 .

[18]  Charalampos P. Triantafyllidis,et al.  Interaction of natrolite and thomsonite intergrowths with aqueous solutions of different initial pH values at 25°C in the presence of KCl: Reaction mechanisms , 1997 .

[19]  S. Banwart,et al.  Biotite dissolution at 25°C: The pH dependence of dissolution rate and stoichiometry , 1997 .

[20]  Sadaaki Yamamoto,et al.  Dissolution of Zeolite in Acidic and Alkaline Aqueous Solutions As Revealed by AFM Imaging , 1996 .

[21]  P. Schindler,et al.  The proton promoted dissolution kinetics of K-montmorillonite , 1996 .

[22]  P. Schweda,et al.  Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature , 1996 .

[23]  D. Cullen,et al.  Scanning force microscopy of gypsum dissolution and crystal growth , 1996 .

[24]  T. Pinnavaia,et al.  Acid Hydrolysis of Octahedral Mg2+ Sites in 2:1 Layered Silicates: An Assessment of Edge Attack and Gallery Access Mechanisms , 1994 .

[25]  C. Eggleston,et al.  Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM) , 1994 .

[26]  E. Kótai,et al.  Computer methods for analysis and simulation of RBS and ERDA spectra , 1994 .

[27]  A. Blum,et al.  Scanning Probe Microscopy of Clay Minerals , 1994 .

[28]  P. Hansma,et al.  Atomic-scale imaging of calcite growth and dissolution in real time , 1992 .

[29]  G. F. Marriner,et al.  Apophyllite group: effects of chemical substitutions on dehydration behaviour, recrystallization products and cell parameters , 1990, Mineralogical Magazine.

[30]  D. Pande,et al.  Etch pits on basal cleavage faces of apophyllite crystals , 1990, Mineralogical Magazine.

[31]  Garrison Sposito,et al.  The surface chemistry of soils , 1984 .

[32]  C. Frondel Crystalline silica hydrates from leached silicates , 1979 .

[33]  J. A. Norberg,et al.  Hydroxyapophyllite, a new mineral, and a redefinition of the apophyllite group; I, Description, occurrences, and nomenclature , 1978 .

[34]  P. Black,et al.  Refinement of the Crystal Structure of Apophyllite: I. X-Ray Diffraction and Physical Properties , 1971 .

[35]  A. Newman The Synergetic Effect of Hydrogen Ions on the Cation Exchange of Potassium in Micas , 1970, Clay Minerals.

[36]  M. A. Ittyachen,et al.  Rotation of etch pits on the basal cleavages of apophyllite crystals , 1967 .