The study of new double perovskites K2AgAsX6 (X = Cl, Br) for energy-based applications

[1]  Q. Mahmood,et al.  Tuning of band gap by anions (Cl, Br, I) of double perovskites Rb2AgAsX6 (Cl, Br, I) for solar cells and thermoelectric applications , 2022, Physica Scripta.

[2]  B. Haq,et al.  First-principles calculations to investigate electronic, structural, optical, and thermoelectric properties of semiconducting double perovskite Ba2YBiO6 , 2022, Micro and Nanostructures.

[3]  M. A. Ali,et al.  Study of optoelectronic and thermoelectric properties of double perovskites Rb2AgBiX6 (X = Br, I): by DFT approach , 2022, The European Physical Journal Plus.

[4]  A. Verma,et al.  Emerging study on lead‐free hybrid double perovskite (CH 3 NH 3 ) 2 AgInBr 6 : Potential material for energy conversion between heat and electricity , 2022, Energy Technology.

[5]  M. Chegaar,et al.  Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites , 2022, The European Physical Journal B.

[6]  A. Verma,et al.  Transition metal-based halides double Cs2ZSbX6 (Z = Ag, Cu, and X = Cl, Br, I) perovskites: A mechanically stable and highly absorptive materials for photovoltaic devices , 2022, Journal of Solid State Chemistry.

[7]  D. Rached,et al.  The stability analysis and efficiency of the new MAX-phase compounds M3GaC2 (M: Ti or Zr): A first-principles assessment , 2022, Results in Physics.

[8]  M. Basit,et al.  Optimization of SiO2–TiO2 nanocomposite in hole‐transporting layer (PEDOT:PSS) for enhanced performance of planar Si‐based hybrid solar cells , 2022, International Journal of Energy Research.

[9]  Djoudi,et al.  Theoretical Insight into the Stability, Magneto-electronic and Thermoelectric Properties of XCrSb (X: Fe, Ni) Half-Heusler Alloys and Their Superlattices , 2022, Journal of Superconductivity and Novel Magnetism.

[10]  Afzal Khan,et al.  Exploring electronic, structural, magnetic and thermoelectric properties of novel Ba2EuMoO6 double perovskite , 2022, Materials Science in Semiconductor Processing.

[11]  D. Rached,et al.  A comprehensive computational investigations on the physical properties of TiXSb (X: Ru, Pt) half‐Heusler alloys and Ti 2 RuPtSb 2 double half‐Heusler , 2021, International Journal of Quantum Chemistry.

[12]  Afzal Khan,et al.  Effect of cation exchange on structural, electronic, magnetic and transport properties of Ba2MReO6 (M=In, Gd) , 2021, Journal of Magnetism and Magnetic Materials.

[13]  Zeeshan Tariq,et al.  Morphologically Divergent Development of SnS Photocatalysts from Under-Utilized Ionic Precursors of SILAR Process , 2021, Journal of Cluster Science.

[14]  S. Réhman,et al.  First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I) , 2021, Journal of Physics and Chemistry of Solids.

[15]  T. Alshahrani,et al.  Defective perovskites Cs2SeCl6 and Cs2TeCl6 as novel high temperature potential thermoelectric materials , 2021 .

[16]  S. Mir,et al.  Structural and mechanical stabilities, electronic, magnetic and thermophysical properties of double perovskite Ba2LaNbO6: Probed by DFT computation , 2021, International Journal of Energy Research.

[17]  A. Verma,et al.  Mechanically stable with highly absorptive formamidinium lead halide perovskites [( HC ( NH 2 ) 2 PbX 3 ; X = Br, Cl]: Recent advances and perspectives , 2021 .

[18]  H. Joshi,et al.  Modulation of optical absorption in m-Fe1−xRuxS2 and exploring stability in new m-RuS2 , 2021, Scientific Reports.

[19]  D. Rached,et al.  DFT study with different exchange-correlation potentials of physical properties of the new synthesized alkali-metal based Heusler alloy , 2020 .

[20]  D. Rached,et al.  Insight into the structural, electronic, mechanical and optical properties of inorganic lead bromide perovskite APbBr3 (A = Li, Na, K, Rb, and Cs) , 2020, Computational Condensed Matter.

[21]  S. Dar,et al.  Investigation on bismuth-based oxide perovskites MBiO3 (M = Rb, Cs, Tl) for structural, electronic, mechanical and thermal properties , 2020, The European Physical Journal B.

[22]  Zeeshan Tariq,et al.  Strategic separation of metal sulfides from residual wet-chemical precursors for synchronous production of pure water and nanostructured photocatalysts , 2020, Applied Nanoscience.

[23]  K. Schwarz,et al.  WIEN2k: An APW+lo program for calculating the properties of solids. , 2020, The Journal of chemical physics.

[24]  D. Rached,et al.  DFT calculations of structural, optoelectronic and thermodynamic properties of BxAl1-xP alloys , 2019, Computational Condensed Matter.

[25]  L. Liao,et al.  Progress of Lead‐Free Halide Double Perovskites , 2019, Advanced Energy Materials.

[26]  M. Kurban,et al.  Electronic structure, elastic and phonon properties of perovskite-type hydrides MgXH 3 (X = Fe, Co) for hydrogen storage , 2018, Solid State Communications.

[27]  Yuanhui Sun,et al.  Rational Design of Halide Double Perovskites for Optoelectronic Applications , 2018, Joule.

[28]  E. Meyer,et al.  Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites , 2018, Metals.

[29]  P. Gao,et al.  Development of Perovskite-Type Materials for Thermoelectric Application , 2018, Materials.

[30]  S. Ur,et al.  Thermoelectric Properties of the Perovskite-Type Oxide SrTi1−xNbxO3 Synthesized by Solid-State Reaction Method , 2018, Electronic Materials Letters.

[31]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.

[32]  T. Miyasaka,et al.  Microstructural analysis and optical properties of the halide double perovskite Cs 2 BiAgBr 6 single crystals , 2017, 1711.08148.

[33]  W. Xie,et al.  Computational Study of Halide Perovskite-Derived A2BX6 Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability , 2017, 1706.08674.

[34]  D. Rached,et al.  Investigation of Iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation , 2017 .

[35]  D. Rached,et al.  Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3 , 2017, Journal of Electronic Materials.

[36]  Afzal Khan,et al.  First principles study of structural, optoelectronic and thermoelectric properties of Cu2CdSnX4 (X = S, Se, Te) chalcogenides , 2016 .

[37]  F. Giustino,et al.  Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. , 2016, The journal of physical chemistry letters.

[38]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[39]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[40]  M. Rabah,et al.  Full-potential calculation of the structural, elastic, electronic and magnetic properties of XFeO3 (X = Sr and Ba) perovskite , 2010 .

[41]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[42]  S. Yamanaka,et al.  Thermoelectric properties of perovskite type barium molybdate , 2004 .

[43]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Haq,et al.  First-principles investigations of Na2CuMCl6 (M = Bi, Sb) double perovskite semiconductors: Materials for green technology , 2022, Materials Science in Semiconductor Processing.

[45]  R. Ahuja,et al.  Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics , 2021 .

[46]  R. Radhakrishnan,et al.  First principle study of the structural and optoelectronic properties of direct bandgap double perovskite Cs2AgInCl6 , 2020 .