Does Magnetic Levitation or Suspension Define the Masses of Forming Stars

We investigate whether magnetic tension can define the masses of forming stars by holding up the subcritical envelope of a molecular cloud that suffers gravitational collapse of its supercritical core. We perform an equilibrium analysis of the initial and final states assuming perfect field freezing, no rotation, isothermality, and a completely flattened configuration. The sheet geometry allows us to separate the magnetic tension into a levitation associated with the split monopole formed by the trapped flux of the central star and a suspension associated with curved field lines that thread the static pseudodisk and envelope of material external to the star. We find solutions where the eigenvalue for the stellar mass is a fixed multiple of the initial core mass of the cloud. We verify the analytically derived result by an explicit numerical simulation of a closely related three-dimensional axisymmetric system. However, with field freezing, the implied surface magnetic fields much exceed measured values for young stars. If the pinch by the central split monopole were to be eliminated by magnetic reconnection, then magnetic suspension alone cannot keep the subcritical envelope (i.e., the entire model cloud) from falling onto the star. We argue that this answer has general validity, even if the initial state lacked any kind of symmetry, possessed rotation, and had a substantial level of turbulence. These findings strongly support a picture for the halt of infall that invokes dynamic levitation by YSO winds and jets, but the breakdown of ideal magnetohydrodynamics is required to allow the appearance in the problem of a rapidly rotating, centrifugally supported disk. We use these results to calculate the initial mass function and star formation efficiency for the distributed and clustered modes of star formation.

[1]  Richard I. Klein,et al.  Recent Advances in the Collapse and Fragmentation of Turbulent Molecular Cloud Cores: The Formation of Low Mass Stars , 2003 .

[2]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[3]  A SCUBA survey of the NGC 2068/2071 protoclusters , 2001, astro-ph/0105019.

[4]  S. Terebey,et al.  The formation of cool stars from cloud cores , 1984 .

[5]  F. Shu,et al.  Heating and Ionization of X-Winds , 2001, astro-ph/0110539.

[6]  R. Larson Star formation in groups , 1995 .

[7]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[8]  F. Hoyle On the Fragmentation of Gas Clouds Into Galaxies and Stars. , 1953 .

[9]  Zhi-Yun Li,et al.  Magnetic Forces in an Isopedic Disk , 1997 .

[10]  Enhancement of Ambipolar Diffusion Rates through Field Fluctuations , 2002, astro-ph/0201131.

[11]  E. Falgarone,et al.  Small-Scale Density and Velocity Structure of a Molecular Cloud Edge , 1996 .

[12]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[13]  L. Spitzer,et al.  Star formation in magnetic dust clouds , 1956 .

[14]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[15]  R. Taam,et al.  The evolution of protostars. I - Global formulation and results , 1980 .

[16]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[17]  R. Bachiller BIPOLAR MOLECULAR OUTFLOWS FROM YOUNG STARS AND PROTOSTARS , 1996 .

[18]  J. Silk A Theory for the Initial Mass Function , 1995 .

[19]  C. F. Gammie,et al.  Analysis of Clumps in Molecular Cloud Models: Mass Spectrum, Shapes, Alignment, and Rotation , 2003, astro-ph/0306148.

[20]  Z. Y. Li,et al.  Scale-free Equilibria of Isopedic Polytropic Clouds , 1999, astro-ph/9904028.

[21]  Zhi-Yun Li,et al.  Self-Similar Collapse of an Isopedic Isothermal Disk , 1997 .

[22]  Zhi-Yun Li Formation and Collapse of Magnetized Spherical Molecular Cloud Cores , 1998 .

[23]  Y. Fukui Molecular clouds and star formation , 2005 .

[24]  B. Elmegreen Star Formation in a Crossing Time , 1999, astro-ph/9911172.

[25]  P. Strittmatter,et al.  The Magnetic Field of A Contracting Gas Cloud: II. Finite Diffusion Effects—An Illustrative Example , 1967 .

[26]  M. Norman,et al.  ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests , 1992 .

[27]  J. Bally,et al.  Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula , 1998 .

[28]  Telemachos Ch. Mouschovias,et al.  in The Origin of Stars and Planetary Systems , 1999 .

[29]  E. Ostriker,et al.  Low-Mass Star Formation: Theory , 1999 .

[30]  Ralf S. Klessen One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media , 2000 .

[31]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[32]  N. Evans,et al.  Models of Massive Molecular Clouds , 1974 .

[33]  R. Klessen,et al.  Gravitational Collapse in Turbulent Molecular Clouds. II. Magnetohydrodynamical Turbulence , 2000, astro-ph/0009227.

[34]  C. Lada Cold outflows, energetic winds, and enigmatic jets around young stellar objects , 1985 .

[35]  L. Hartmann,et al.  Comments on Inferences of Star Formation Histories and Birth Lines , 2002, astro-ph/0211021.

[36]  R. Nishi,et al.  Magnetic flux loss from interstellar clouds with various grain-size distributions , 1991 .

[37]  F. Shu,et al.  Molecular cloud cores and bimodal star formation , 1989 .

[38]  J. Bally,et al.  HERBIG-HARO FLOWS: Probes of Early Stellar Evolution , 2001 .

[39]  A Theory of the IMF for Star Formation in Molecular Clouds , 1996, astro-ph/9601139.

[40]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[41]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[42]  R. Crutcher,et al.  OH Zeeman Measurement of the Magnetic Field in the L1544 Core , 2000 .

[43]  Richard I. Klein,et al.  Self-gravitational Hydrodynamics with Three-dimensional Adaptive Mesh Refinement: Methodology and Applications to Molecular Cloud Collapse and Fragmentation , 1998 .

[44]  C. McKee Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .

[45]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[46]  Tomoaki Matsumoto,et al.  Fragmentation of a Molecular Cloud Core versus Fragmentation of the Massive Protoplanetary Disk in the Main Accretion Phase , 2003 .

[47]  K. Luhman The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Taurus , 2000, astro-ph/0007059.

[48]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[49]  G. Marcy,et al.  Limits on the Magnetic Flux of a Pre-Main Sequence Star , 1992 .

[50]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003, astro-ph/0311377.

[51]  F. Adams,et al.  Dense Cores Mapped in Ammonia: A Database , 1999 .

[52]  Christopher D. Koresko,et al.  Measuring the Magnetic Field on the Classical T Tauri Star BP Tauri , 1999 .

[53]  Neal J. Evans Physical conditions in regions of star formation , 1999 .

[54]  Takashi S. Nakamura,et al.  The equilibria and evolutions of magnetized, rotating, isothermal clouds. IV. Quasi-static evolution , 1990 .

[55]  Zhi-Yun Li,et al.  Hydromagnetic Accretion Shocks around Low-Mass Protostars , 1996 .

[56]  Frank H. Shu,et al.  Magnetized Singular Isothermal Toroids , 1996 .

[57]  S. Stahler The birthline for low-mass stars , 1983 .

[58]  G. Sandell,et al.  NGC 1333—Protostars, Dust Shells, and Triggered Star Formation , 2000 .

[59]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .

[60]  B. Elmegreen,et al.  A Universal Formation Mechanism for Open and Globular Clusters in Turbulent Gas , 1997 .

[61]  M. Wolfire,et al.  Conditions for the formation of massive stars , 1987 .

[62]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[63]  A. Lazarian,et al.  Turbulent Cooling Flows in Molecular Clouds , 1998, astro-ph/9811044.

[64]  P. Bodenheimer Evolution of rotating interstellar clouds. III - On the formation of multiple star systems , 1978 .

[65]  S. Basu,et al.  Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. I. Axisymmetric solutions , 1994 .

[66]  J. Najita,et al.  X-Ray Ionization of Protoplanetary Disks , 1997 .

[67]  T. Mouschovias Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: star formation. II. Results. , 1976 .

[68]  C. Lada,et al.  The Structure and Energetics of a Highly Collimated Bipolar Outflow: NGC 2264G , 1996 .

[69]  U. Virginia,et al.  Binary and Multiple Star Formation in Magnetic Clouds: Bar Growth and Fragmentation , 2003, astro-ph/0305317.

[70]  C. Masson,et al.  Properties of Swept-up Molecular Outflows , 1992 .

[71]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[72]  J. E. Tohline The gravitational fragmentation of primordial gas clouds , 1980 .

[73]  Bruce T. Draine,et al.  in Protostars and Planets II , 1985 .

[74]  D. Layzer The Formation of Stars and Galaxies: Unified Hypotheses , 1964 .

[75]  F. Shu,et al.  A Toy Model of Giant Molecular Clouds , 2000 .

[76]  J. Silk On the fragmentation of cosmic gas clouds. II - Opacity-limited star formation , 1977 .

[77]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[78]  G. Fuller,et al.  Gravitational formation times and stellar mass distributions for stars of mass 0.3-30 solar masses , 1993 .

[79]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[80]  B. Elmegreen A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes , 1996, astro-ph/0112528.

[81]  Martin J. Rees,et al.  Opacity-Limited Hierarchical Fragmentation and the Masses of Protostars , 1976 .

[82]  M. Hénon,et al.  Dynamical structure and evolution of stellar systems , 1973 .

[83]  E. Zweibel Ambipolar Drift in a Turbulent Medium , 2001, astro-ph/0107462.

[84]  Yvonne Choquet-Bruhat,et al.  On relativity theory , 1985 .

[85]  F. Adams,et al.  Infall collapse solutions in the inner limit: Radiation pressure and its effects on star formation , 1995, astro-ph/9511095.

[86]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[87]  J. Scalo Perception of interstellar structure - Facing complexity , 1990 .

[88]  H. Zinnecker Star formation from hierarchical cloud fragmentation - A statistical theory of the log-normal Initial Mass Function , 1984 .

[89]  R. Capuzzo-Dolcetta,et al.  Physical Processes in Fragmentation and Star Formation , 1990 .

[90]  J. Najita,et al.  Mass loss from rapidly rotating magnetic protostars , 1988 .

[91]  Leonardo Testi,et al.  Star Formation in Clusters: A Survey of Compact Millimeter-Wave Sources in the Serpens Core , 1998, astro-ph/9809323.