Silicate cathodes for lithium batteries: alternatives to phosphates?

Polyoxyanion compounds, particularly the olivine-phosphate LiFePO4, are receiving considerable attention as alternative cathodes for rechargeable lithium batteries. More recently, an entirely new class of polyoxyanion cathodes based on the orthosilicates, Li2MSiO4 (where M = Mn, Fe, and Co), has been attracting growing interest. In the case of Li2FeSiO4, iron and silicon are among the most abundant and lowest cost elements, and hence offer the tantalising prospect of preparing cheap and safe cathodes from rust and sand! This Highlight presents an overview of recent developments and future challenges of silicate cathode materials focusing on their structural polymorphs, electrochemical behaviour and nanomaterials chemistry.

[1]  Robert Dominko,et al.  Impact of synthesis conditions on the structure and performance of Li2FeSiO4 , 2008 .

[2]  M. Armand,et al.  Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS , 2006 .

[3]  Robert Dominko,et al.  Dependence of Li2FeSiO4 electrochemistry on structure. , 2011, Journal of the American Chemical Society.

[4]  Yong Yang,et al.  Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries , 2007 .

[5]  A. Yamada,et al.  Structure of Li2FeSiO4. , 2008, Journal of the American Chemical Society.

[6]  M. Armand,et al.  Building better batteries , 2008, Nature.

[7]  Yong Yang,et al.  Synthesis and Characterization of Li2Mn x Fe1 − x SiO4 as a Cathode Material for Lithium-Ion Batteries , 2006 .

[8]  M Stanley Whittingham,et al.  Inorganic nanomaterials for batteries. , 2008, Dalton transactions.

[9]  V. Nalbandyan,et al.  Crystal structure, phase relations and electrochemical properties of monoclinic Li2MnSiO4 , 2007 .

[10]  L. Dupont,et al.  On the Energetic Stability and Electrochemistry of Li2MnSiO4 Polymorphs , 2008 .

[11]  Torbjörn Gustafsson,et al.  The lithium extraction/insertion mechanism in Li2FeSiO4 , 2006 .

[12]  A. West,et al.  Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds , 1972 .

[13]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[14]  P. Bruce,et al.  Polymorphism and structural defects in Li(2)FeSiO(4). , 2010, Dalton transactions.

[15]  Xing Li,et al.  Synthesis and electrochemical performance of Li2FeSiO4/C as cathode material for lithium batteries , 2010 .

[16]  T. Gustafsson,et al.  A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes , 2009 .

[17]  Alojz Kodre,et al.  In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials , 2009 .

[18]  Songtao Zhang,et al.  Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M = Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries , 2011 .

[19]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[20]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[21]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[22]  Yong Yang,et al.  Nanostructured Li2FeSiO4 Electrode Material Synthesized through Hydrothermal-Assisted Sol-Gel Process , 2008 .

[23]  R. Dominko,et al.  6Li MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs. , 2010, Chemical communications.

[24]  Robert Dominko,et al.  Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials , 2006 .

[25]  P. Bruce,et al.  The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries , 2007 .

[26]  Yun-Sung Lee,et al.  Adipic acid assisted sol–gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties , 2010 .

[27]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[28]  A. West,et al.  Crystallisation of lithium zinc silicates , 1970 .

[29]  Yong Yang,et al.  Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries , 2007 .

[30]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[31]  R. Ahuja,et al.  Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations , 2010 .

[32]  K. Zaghib,et al.  Structural, magnetic and electrochemical properties of lithium iron orthosilicate , 2006 .

[33]  P. Bruce,et al.  Structural Polymorphism in Li2CoSiO4 Intercalation Electrodes: A Combined Diffraction and NMR Study , 2010 .

[34]  M. Islam,et al.  Li2MnSiO4 Lithium Battery Material: Atomic-Scale Study of Defects, Lithium Mobility, and Trivalent Dopants , 2009 .

[35]  Yong Yang,et al.  Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe, Co, Ni) : A GGA and GGA + U study , 2009 .

[36]  Sen Zhang,et al.  Preparation of Nano- Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries , 2009 .

[37]  M. Islam Recent atomistic modelling studies of energy materials: batteries included , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  R. Dominko,et al.  On the Origin of the Electrochemical Capacity of Li2Fe0.8Mn0.2SiO4 , 2010 .

[39]  Robert Dominko,et al.  Beyond One-Electron Reaction in Li Cathode Materials: Designing Li2MnxFe1-xSiO4 , 2007 .

[40]  Ilias Belharouak,et al.  Structural and electrochemical characterization of Li{sub 2}MnSiO{sub 4} cathode material. , 2009 .

[41]  Robert Dominko,et al.  Li2MSiO4 (M = Fe and/or Mn) cathode materials , 2008 .

[42]  Hai-Qing Lin,et al.  Structural, Electronic, and Electrochemical Properties of Cathode Materials Li2MSiO4 (M =Mn, Fe, and Co): Density Functional Calculations , 2010 .

[43]  R. Basu,et al.  Improved Electrochemical Performance of Li2MnSiO4 / C Composite Synthesized by Combustion Technique , 2009 .

[44]  Jean-Marie Tarascon,et al.  On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) , 2006 .

[45]  Arumugam Manthiram,et al.  Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries , 2010 .

[46]  Phase diagram of the LISICON, solid electrolyte system, Li4GeO4Zn2GeO4 , 1980 .

[47]  R. Dominko,et al.  Electrochemical Behavior of Li2FeSiO4 with Ionic Liquids at Elevated Temperature , 2009 .

[48]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .