Quantum theory and molecular structure

Abstract An attempt is made to refine the classical concept of molecular structure in the light of quantum theory. It is argued that a definite molecular structure can only be associated with quantum states that are intrinsically time-dependent and therefore need not manifest the full symmetry implied by the relativity principle; conversely if a molecule is definitely observed in an eigenstate of its associated molecular Schrodinger equation, a molecular structure description is inappropriate. The theme of the article is illustrated with examples drawn from spectroscopy, dielectric phenomena, electron scattering, stereoisomerism and optical activity.

[1]  P. Doty,et al.  Polypeptides. IV. The Molecular Weight, Configuration and Association of Poly-γ-benzyl-L-glutamate in Various Solvents , 1956 .

[2]  T. Lowry Optical Rotatory Power , 2015, Nature.

[3]  E. A. Power Introductory Quantum Electrodynamics , 1964 .

[4]  Van Vleck On Dielectric Constants and Magnetic Susceptibilities in the new Quantum Mechanics Part I. A General Proof of the Langevin-Debye Formula , 1927 .

[5]  L. Foldy RELATIVISTIC PARTICLE SYSTEMS WITH INTERACTION , 1961 .

[6]  P. Anderson More is different. , 1972, Science.

[7]  C. Schwartz,et al.  CENTER-OF-MASS MOTION IN MANY-PARTICLE SYSTEMS , 1957 .

[8]  James Franck,et al.  Elementary processes of photochemical reactions , 1926 .

[9]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[10]  Evgenii Mikhailovich Lifshitz,et al.  Relativistic quantum theory , 1971 .

[11]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .

[12]  A. Messiah Quantum Mechanics , 1961 .

[13]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[14]  L. Barron Parity and Optical Activity , 1972, Nature.

[15]  S. Zienau,et al.  Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines , 1959, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[16]  J. Cashion Properties of the 1Σg+ State of H2 Calculated from an Accurate Adiabatic Potential , 1966 .

[17]  Alan Carrington,et al.  Microwave spectroscopy of free radicals , 1974 .

[18]  Philip M. Morse,et al.  Electronic and Ionic Impact Phenomena , 1953 .

[19]  Tosio Kato Fundamental properties of Hamiltonian operators of Schrödinger type , 1951 .

[20]  H. C. Longuet-Higgins The symmetry groups of non-rigid molecules , 1963 .

[21]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[22]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[23]  G. Herzberg,et al.  THE LYMAN BANDS OF MOLECULAR HYDROGEN , 1959 .

[24]  W. Kołos,et al.  Nonadiabatic Theory for Diatomic Molecules and Its Application to the Hydrogen Molecule , 1963 .

[25]  N. Handy,et al.  Variational calculation of vibration-rotation energy levels for triatomic molecules , 1975 .

[26]  Étude critique des bases de l'interprétation actuelle de la mécanique ondulatoire , 1963 .

[27]  C. Darwin Free Motion in the Wave Mechanics , 1927 .

[28]  R. Woolley Spin interactions in molecules , 1975 .

[29]  P. Atkins,et al.  On the theory of optical activity , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[31]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[32]  P. Roy,et al.  Inhibition by delta 1-tetrahydrocannabinol of a Na+-K+ transport ATPase from rat ileum. Preliminary report. , 1974, Canadian journal of physiology and pharmacology.

[33]  The Chemical Bond , 1933 .

[34]  C. H. WADDINGTON,et al.  Towards a Theoretical Biology , 1968, Nature.

[35]  G. Herzberg,et al.  The Lyman and Werner Bands of Deuterium , 1973 .

[36]  L. Nordheim Zur Quantentheorie des Wasserstoffmoleküls , 1923 .

[37]  H. F. Hameka,et al.  Isotope Effects in Optical Rotation1 , 1966 .

[38]  W. Pauli Über das Modell des Wasserstoffmolekülions , 1922 .

[39]  R. S. Mulliken On a Class of One-Valence-Electron Emitters of Band Spectra , 1925 .

[40]  W. Heisenberg A quantum-theoretical reinterpretation of kinematic and mechanical relations , 1925 .

[41]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[42]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[43]  E. Sudarshan,et al.  RELATIVISTIC INVARIANCE AND HAMILTONIAN THEORIES OF INTERACTING PARTICLES , 1963 .

[44]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[45]  J. L. Kinsey,et al.  VARIATIONAL TREATMENT OF ELECTRONIC AND MESONIC HYDROGEN MOLECULE IONS. Technical Note No. 53 , 1960 .

[46]  W. Gordy,et al.  Precision measurement of dipole moments and other spectral constants of normal and deuterated methyl fluoride and methyl cyanide , 1966 .

[47]  H. Primas Pattern recognition in molecular quantum mechanics , 1975 .

[48]  W. Scott,et al.  Group Theory. , 1964 .

[49]  J. C. Phillips Ionicity of the Chemical Bond in Crystals , 1970 .

[50]  H. James,et al.  On the Determination of Molecular Potential Curves from Spectroscopic Data , 1938 .

[51]  R. Sack,et al.  Ground State of Systems of Three Particles with Coulomb Interaction , 1960 .

[52]  A. Buckingham,et al.  Isotope effects on molecular properties , 1975 .

[53]  L. Rosenfeld Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen , 1929 .