Defining the antibody cross-reactome against the influenza virus surface glycoproteins

[1]  Caitlin E. Mullarkey,et al.  Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. , 2016, Cell host & microbe.

[2]  P. Wilson,et al.  Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. , 2016, The Journal of clinical investigation.

[3]  P. Palese,et al.  Vaccination with Adjuvanted Recombinant Neuraminidase Induces Broad Heterologous, but Not Heterosubtypic, Cross-Protection against Influenza Virus Infection in Mice , 2015, mBio.

[4]  Florian Krammer,et al.  Advances in the development of influenza virus vaccines , 2015, Nature Reviews Drug Discovery.

[5]  A. Tricco,et al.  Natural attack rate of influenza in unvaccinated children and adults: a meta-regression analysis , 2014, BMC Infectious Diseases.

[6]  C. A. Russell,et al.  Antibody landscapes after influenza virus infection or vaccination , 2014, Science.

[7]  K. Braeckmans,et al.  A Beneficiary Role for Neuraminidase in Influenza Virus Penetration through the Respiratory Mucus , 2014, PloS one.

[8]  R. Hai,et al.  Induction of Broadly Reactive Anti-Hemagglutinin Stalk Antibodies by an H5N1 Vaccine in Humans , 2014, Journal of Virology.

[9]  F. Krammer,et al.  In the Shadow of Hemagglutinin: A Growing Interest in Influenza Viral Neuraminidase and Its Role as a Vaccine Antigen , 2014, Viruses.

[10]  Weizhong Yang,et al.  Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study , 2014, The Lancet.

[11]  P. Palese,et al.  Broadly neutralizing hemagglutinin stalk–specific antibodies require FcγR interactions for protection against influenza virus in vivo , 2014, Nature Medicine.

[12]  P. Palese,et al.  Universal influenza virus vaccines: need for clinical trials , 2013, Nature Immunology.

[13]  Rong Hai,et al.  Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins , 2013, Proceedings of the National Academy of Sciences.

[14]  P. Palese,et al.  Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system. , 2013, Journal of visualized experiments : JoVE.

[15]  Florian Krammer,et al.  Influenza virus hemagglutinin stalk-based antibodies and vaccines. , 2013, Current opinion in virology.

[16]  Florian Krammer,et al.  Neutralizing Antibodies Against Previously Encountered Influenza Virus Strains Increase over Time: A Longitudinal Analysis , 2013, Science Translational Medicine.

[17]  J. Plotkin,et al.  Immune history shapes specificity of pandemic H1N1 influenza antibody responses , 2013, The Journal of experimental medicine.

[18]  T. Friedrich,et al.  Antibody-Dependent Cellular Cytotoxicity Is Associated with Control of Pandemic H1N1 Influenza Virus Infection of Macaques , 2013, Journal of Virology.

[19]  E. Wherry,et al.  Cooperativity Between CD8+ T Cells, Non-Neutralizing Antibodies, and Alveolar Macrophages Is Important for Heterosubtypic Influenza Virus Immunity , 2013, PLoS pathogens.

[20]  K. Laurie,et al.  Cross-Reactive Influenza-Specific Antibody-Dependent Cellular Cytotoxicity Antibodies in the Absence of Neutralizing Antibodies , 2013, The Journal of Immunology.

[21]  John J. Treanor,et al.  H3N2 Influenza Virus Infection Induces Broadly Reactive Hemagglutinin Stalk Antibodies in Humans and Mice , 2013, Journal of Virology.

[22]  M. Eichelberger,et al.  Protection against a lethal H5N1 influenza challenge by intranasal immunization with virus-like particles containing 2009 pandemic H1N1 neuraminidase in mice. , 2012, Virology.

[23]  N. S. Laursen,et al.  Highly Conserved Protective Epitopes on Influenza B Viruses , 2012, Science.

[24]  Jens C. Krause,et al.  A Carboxy-Terminal Trimerization Domain Stabilizes Conformational Epitopes on the Stalk Domain of Soluble Recombinant Hemagglutinin Substrates , 2012, PloS one.

[25]  Mark Mulligan,et al.  Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells , 2012, Proceedings of the National Academy of Sciences.

[26]  J. Crowe,et al.  Human Monoclonal Antibodies to Pandemic 1957 H2N2 and Pandemic 1968 H3N2 Influenza Viruses , 2012, Journal of Virology.

[27]  Adolfo García-Sastre,et al.  Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses , 2012, Proceedings of the National Academy of Sciences.

[28]  A. Monto,et al.  Influenza hemagglutination-inhibition antibody titer as a correlate of vaccine-induced protection. , 2011, The Journal of infectious diseases.

[29]  F. Ennis,et al.  Complement-Dependent Lysis of Influenza A Virus-Infected Cells by Broadly Cross-Reactive Human Monoclonal Antibodies , 2011, Journal of Virology.

[30]  Kimihito Ito,et al.  Gnarled-Trunk Evolutionary Model of Influenza A Virus Hemagglutinin , 2011, PloS one.

[31]  Martin H. Koldijk,et al.  A Highly Conserved Neutralizing Epitope on Group 2 Influenza A Viruses , 2011, Science.

[32]  J. Yewdell,et al.  Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection , 2011, The Journal of Experimental Medicine.

[33]  J. Yewdell,et al.  Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection , 2011, The Journal of experimental medicine.

[34]  A. García-Sastre,et al.  Generation of recombinant influenza virus from plasmid DNA. , 2010, Journal of visualized experiments : JoVE.

[35]  F. Krammer,et al.  Trichoplusia ni cells (High FiveTM) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines , 2010, Molecular biotechnology.

[36]  Ron A M Fouchier,et al.  Antigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in Humans , 2009, Science.

[37]  Gavin J. D. Smith,et al.  Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic , 2009, Nature.

[38]  Gira Bhabha,et al.  Antibody Recognition of a Highly Conserved Influenza Virus Epitope , 2009, Science.

[39]  Boguslaw Stec,et al.  Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses , 2009, Nature Structural &Molecular Biology.

[40]  James E. Crowe,et al.  Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors , 2008, Nature.

[41]  R. Dwek,et al.  Structural Characterization of the 1918 Influenza Virus H1N1 Neuraminidase , 2008, Journal of Virology.

[42]  Yoshihiro Kawaoka,et al.  Influenza: lessons from past pandemics, warnings from current incidents , 2005, Nature Reviews Microbiology.

[43]  Ian A. Wilson,et al.  Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus , 2004, Science.

[44]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[45]  R. Webster,et al.  Antigenic variation in three distinct determinants of an influenza type A haemagglutinin molecule , 1979, Nature.

[46]  T. Gray The need for clinical trials. , 1967, British journal of anaesthesia.

[47]  Jie Dong,et al.  Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. , 2018 .

[48]  D. Sommers,et al.  A longitudinal analysis , 1992 .