Interface and bonding mechanisms of plant fibre composites: An overview

Abstract The development of plant fibre composite is on the rise for a wide range of applications. Probably a single most important aspect with respect to the formulation of plant fibre composites with superior mechanical performance is the optimization of the interfacial bonding between the reinforcing plant fibre and polymer matrix. While the interface plays a pivotal role in determining the mechanical properties, e.g. transferring the stress and distributing the bond, it is among the least understood components of the composite. This paper presents an overview of the compatibility between the heterogeneous constituents of plant fibre composite, various modification approaches aiming at overcoming the incompatibility and refining the interfacial adhesion of the composite, interfacial bonding mechanisms, and the assessment of interface structure and bonding. It has been found that 1) the physical and chemical incompatibility between the fibre and matrix, leading to poor dispersion, weak interfacial adhesion and ultimately inferior composite quality, could be overcome through strategical modifications; 2) inter-diffusion, electrostatic adhesion, chemical reactions and mechanical interlocking are in general responsible for the interfacial bonding and adhesion of plant fibre composites; and 3) a thorough knowledge of structure-property relationship of the composite could be established by conducting a set of direct and indirect interfacial assessments. This paper finishes with some critical suggestions and future perspectives, underscoring the roles of composite material researchers and engineers for the further in-depth studies and up-scale commercialization of plant fibre composite.

[1]  J. Prachayawarakorn,et al.  Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites , 2013 .

[2]  Kaewta Kaewtatip,et al.  Studies on the structure and properties of thermoplastic starch/luffa fiber composites , 2012 .

[3]  D. Gardner,et al.  Forced Air Plasma Treatment (FAPT) of Hybrid Wood Plastic Composite (WPC)–Fiber Reinforced Plastic (FRP) Surfaces , 2009 .

[4]  M. Masuelli Fiber Reinforced Polymers - The Technology Applied for Concrete Repair , 2013 .

[5]  H. Ismail,et al.  Rice husk powder–filled polystyrene/styrene butadiene rubber blends , 2004 .

[6]  Shinji Ochi,et al.  Mechanical properties of kenaf fibers and kenaf/PLA composites , 2008 .

[7]  Mohini Sain,et al.  Interface Modification and Mechanical Properties of Natural Fiber-Polyolefin Composite Products , 2005 .

[8]  A. J. Michell,et al.  Future prospects for wood cellulose as reinforcement in organic polymer composites , 1989 .

[9]  Sabu Thomas,et al.  Oil Palm Fibre Reinforced Phenol Formaldehyde Composites: Influence of Fibre Surface Modifications on the Mechanical Performance , 2000 .

[10]  M. Tavares,et al.  Solid-state nuclear magnetic resonance study of polyurethane/natural fibers composites , 2002 .

[11]  J. Covas,et al.  Development of polyhydroxyalkanoate/beer spent grain fibers composites for film blowing applications , 2015 .

[12]  M. Ragoubi,et al.  Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix , 2012 .

[13]  J. Madaan,et al.  Tribological behavior of natural fiber reinforced PLA composites , 2013 .

[14]  Chin-San Wu Preparation, characterization and biodegradability of crosslinked tea plant-fibre-reinforced polyhydroxyalkanoate composites , 2013 .

[15]  A. J. Carvalho,et al.  Natural fiber-reinforced thermoplastic starch composites obtained by melt processing , 2012 .

[16]  Yong K Kim,et al.  Effect of surface treatment and Z-axis reinforcement on the interlaminar fracture of jute/epoxy laminated composites , 2013 .

[17]  S. Boufi,et al.  Effect of silane coupling agents on the properties of pine fibers/polypropylene composites , 2007 .

[18]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[19]  Hota V. S. GangaRao,et al.  Critical review of recent publications on use of natural composites in infrastructure , 2012 .

[20]  A. J. Carvalho,et al.  Thermoplastic starch–cellulosic fibers composites: preliminary results , 2001 .

[21]  K. Satyanarayana,et al.  Biodegradable composites based on lignocellulosic fibers—An overview , 2009 .

[22]  H. P. S. Abdul Khalil,et al.  Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites , 2000 .

[23]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[24]  Alain Dufresne,et al.  Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch , 2009 .

[25]  B. F. Yousif,et al.  A review on the degradability of polymeric composites based on natural fibres , 2013 .

[26]  M. A. Khan,et al.  Improvement of Mechanical Properties of Jute Fibers-Polyethylene/Polypropylene Composites: Effect of Green Dye and UV Radiation , 2009 .

[27]  I. Avramova,et al.  Wood flour: New filler for the rubber processing industry. IV. Cure characteristics and mechanical properties of natural rubber compounds filled by non-modified or corona treated wood flour , 2006 .

[28]  M.O.W. Richardson,et al.  The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites , 2007 .

[29]  R. Khan,et al.  A Comparative Study between Gamma and UV Radiation of Jute fabrics/Polypropylene Composites: Effect of Starch , 2010 .

[30]  D. Hui,et al.  Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites , 2014 .

[31]  S. Kalia,et al.  Pretreatments of Natural Fibers and their Application as Reinforcing Material in Polymer Composites—A Review , 2009 .

[32]  J. Gassan,et al.  Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites , 2000 .

[33]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[34]  H. Hamada,et al.  Impact Property of Flexible Epoxy Treated Natural Fiber Reinforced PLA Composites , 2013 .

[35]  M. Zehetbauer,et al.  Analysis of strain bursts during nanoindentation creep of high-density polyethylene , 2015 .

[36]  Rahul Bhardwaj,et al.  Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. , 2006, Biomacromolecules.

[37]  H. Hwang,et al.  Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240 , 2003 .

[38]  Md. Abul Hossain,et al.  Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites , 2009 .

[39]  M. Ansell,et al.  Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization , 2002 .

[40]  P. Dineff,et al.  Wood flour: A new filler for the rubber processing industry. II. Cure characteristics and mechanical properties of NBR compounds filled with corona‐treated wood flour , 2004 .

[41]  M. Sarıkanat,et al.  The effect of argon and air plasma treatment of flax fiber on mechanical properties of reinforced polyester composite , 2016 .

[42]  Yulin Deng,et al.  Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber , 2013, Polymer Bulletin.

[43]  S. Mohanty,et al.  Interfacial, dynamic mechanical, and thermal fiber reinforced behavior of MAPE treated sisal fiber reinforced HDPE composites , 2006 .

[44]  R. Krishnaprasad,et al.  Mechanical and Thermal Properties of Bamboo Microfibril Reinforced Polyhydroxybutyrate Biocomposites , 2009 .

[45]  Sabu Thomas,et al.  Water sorption in oil palm fiber reinforced phenol formaldehyde composites , 2002 .

[46]  Yunxuan Weng,et al.  Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites , 2014 .

[47]  Hao Wang,et al.  Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview , 2012 .

[48]  S. Mohanty,et al.  Effect of MAPP as Coupling Agent on the Performance of Sisal–PP Composites , 2004 .

[49]  M. Paoli,et al.  Thermal properties of high density polyethylene composites with natural fibres : Coupling agent effect , 2008 .

[50]  H. Bader,et al.  Influence of natural fibres on the mechanical properties of biodegradable polymers. , 1998 .

[51]  P. Perré,et al.  Effects of wood fiber surface chemistry on strength of wood–plastic composites , 2015 .

[52]  E. Thostenson,et al.  Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose , 2009 .

[53]  A. Heredia,et al.  Phase transitions in the biopolyester cutin isolated from tomato fruit cuticles , 2004 .

[54]  R. Khan,et al.  Effect of Gamma Radiation on the Physico-Mechanical and Electrical Properties of Jute Fiber-Reinforced Polypropylene Composites , 2009 .

[55]  Qinglin Wu,et al.  Chemical Coupling in Wood Fiber and Polymer Composites: A Review of Coupling Agents and Treatments , 2000 .

[56]  Z. Zhang,et al.  Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite , 2015 .

[57]  M. Ragoubi,et al.  Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof , 2010 .

[58]  J. Móczó,et al.  PLA/lignocellulosic fiber composites: Particle characteristics, interfacial adhesion, and failure mechanism , 2014 .

[59]  J. Prachayawarakorn,et al.  Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene , 2010 .

[60]  P. Chang,et al.  Bamboo fiber and its reinforced composites: structure and properties , 2012, Cellulose.

[61]  L. Tabil,et al.  Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review , 2007 .

[62]  B. Wang,et al.  Pre-treatment of Flax Fibers for use in Rotationally Molded Biocomposites , 2007 .

[63]  R. Ayad,et al.  Effect of alkali treatment on Alfa fibre as reinforcement for polypropylene based eco-composites: Mechanical behaviour and water ageing , 2015 .

[64]  Luiz Pereira Ramos,et al.  Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. , 2010 .

[65]  R. Reis,et al.  Hybrid cork-polymer composites containing sisal fibre : morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction , 2013 .

[66]  S. Mukhopadhyay,et al.  Interface Behavior in Polypropylene Composites , 2003 .

[67]  R. Långström,et al.  UV aging of poly(propylene)/wood‐fiber composites , 2004 .

[68]  B. Kokta,et al.  Compounding of cellulose fibers with polypropylene: Effect of fiber treatment on dispersion in the polymer matirx , 1989 .

[69]  G. Pharr,et al.  Nanoindentation of juvenile and mature loblolly pine (Pinus taeda L.) wood fibers as affected by thermomechanical refining pressure , 2009, Wood Science and Technology.

[70]  A. Kelly,et al.  Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum , 1965 .

[71]  Manjusri Misra,et al.  Surface modifications of natural fibers and performance of the resulting biocomposites: An overview , 2001 .

[72]  M. Wolcott,et al.  Study of the Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker Composites Prepared by Solution Casting and Melt Processing , 2008 .

[73]  S. Bai,et al.  Viscoelastic properties of wood materials characterized by nanoindentation experiments , 2012, Wood Science and Technology.

[74]  M. Wolcott,et al.  Production of natural fiber reinforced thermoplastic composites through the use of polyhydroxybutyrate-rich biomass. , 2008, Bioresource technology.

[75]  Timothy G. Rials,et al.  Nanoindentation of wood cell walls: Continuous stiffness and hardness measurements , 2007 .

[76]  Sabu Thomas,et al.  A review on interface modification and characterization of natural fiber reinforced plastic composites , 2001 .

[77]  P. Hatcher,et al.  Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy. , 2003, Phytochemistry.

[78]  Selvin P. Thomas,et al.  Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites , 2004 .

[79]  A. Błędzki,et al.  Wood-filled thermoplastic composites , 1998 .

[80]  Z. Cai,et al.  Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. , 2010, Bioresource technology.

[81]  Lihui Chen,et al.  Lignocellulosic fibre mediated rubber composites: An overview , 2015 .

[82]  K. Kurita Controlled functionalization of the polysaccharide chitin , 2001 .

[83]  Nuno Calçada Loureiro,et al.  Development of polyhydroxyalkanoates/poly(lactic acid) composites reinforced with cellulosic fibers , 2014 .

[84]  K. Réczey,et al.  Reducing water absorption in compostable starch-based plastics , 2005 .

[85]  K. Ahmed,et al.  Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica , 2013, Journal of advanced research.

[86]  M. John,et al.  Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites , 2008 .

[87]  Huining Xiao,et al.  Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. , 2014, Carbohydrate polymers.

[88]  A. Mohanty,et al.  Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation , 2007 .

[89]  M. Kodal,et al.  Dual effect of chemical modification and polymer precoating of flax fibers on the properties of short flax fiber/poly(lactic acid) composites , 2015 .

[90]  I. Verpoest,et al.  Understanding the interfacial compatibility and adhesion of natural coir fibre thermoplastic composites , 2013 .

[91]  Anupama Kaushik,et al.  Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw , 2010 .

[92]  I. Mondragon,et al.  Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites , 2003 .

[93]  W. Glasser,et al.  Fiber‐reinforced cellulosic thermoplastic composites , 1999 .

[94]  J. Jog,et al.  Natural fiber polymer composites: A review , 1999 .

[95]  A. Mamun,et al.  The effects of acetylation on properties of flax fibre and its polypropylene composites , 2008 .

[96]  S. Mohanty,et al.  Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites , 2006 .

[97]  A. V. R. Prasad,et al.  Tensile Properties of Successive Alkali Treated Short Jute Fiber Reinforced PLA Composites , 2014 .

[98]  A. Heredia,et al.  Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. , 2003, Biochimica et biophysica acta.

[99]  Sabu Thomas,et al.  The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites , 2005 .

[100]  K. Pickering Properties and performance of natural-fibre composites , 2008 .

[101]  A. Gibson,et al.  Mechanical properties of Napier grass fibre/polyester composites , 2016 .

[102]  B. F. Yousif,et al.  The effects of alkali treatment on the interfacial adhesion of bamboo fibres , 2010 .

[103]  G. Marosi,et al.  Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system , 2014 .

[104]  A. Rana,et al.  Effect of alkali treated jute fibres on composite properties , 2001 .

[105]  P. Dineff,et al.  Wood flour: A new filler for the rubber processing industry.III: Cure characteristics and mechanical properties of nitrile butadiene rubber compounds filled by wood flour in the presence of phenol-formaldehyde resin , 2004 .

[106]  Zachary C. Wright,et al.  Mechanisms and impact of fiber–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites , 2012 .

[107]  Jin Kuk Kim,et al.  Recent Advances in the Processing of Wood-Plastic Composites , 2010 .

[108]  Sabu Thomas,et al.  Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites , 1996 .

[109]  Smita Mohanty,et al.  Effect of MAPP as a Coupling Agent on the Performance of Jute–PP Composites , 2004 .

[110]  E. Mäder,et al.  Jute fibre/epoxy composites: Surface properties and interfacial adhesion , 2012 .

[111]  V. S. Prasad,et al.  The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites , 2003 .

[112]  Stefanie Feih,et al.  Testing Procedure for the Single Fiber Fragmentation Test , 2004 .

[113]  G. J. Cruz,et al.  Plasma modification of cellulose fibers for composite materials , 2006 .

[114]  John G. Lyons,et al.  Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites , 2013 .

[115]  C. Hill,et al.  Silane coupling agents used for natural fiber/polymer composites: A review , 2010 .

[116]  John S. Villarrubia,et al.  Nanoindentation of Polymers: An Overview | NIST , 2001 .

[117]  W. Gindl,et al.  Nanoindentation of regenerated cellulose fibres , 2006 .

[118]  L L.T.DRZA,et al.  Fibre-matrix adhesion and its relationship to composite mechanical properties , 2022 .

[119]  Haitao Xu,et al.  Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis , 2007 .

[120]  Manjusri Misra,et al.  Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties , 2006 .

[121]  R. Shanks,et al.  Composition, structure and thermal degradation of hemp cellulose after chemical treatments , 2005 .

[122]  Y. Seki Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites , 2009 .

[123]  Ajit K. Roy,et al.  Engineered interfaces in fiber reinforced composites , 1999 .

[124]  G. Unnikrishnan,et al.  Dielectric properties of short sisal/coir hybrid fibre reinforced natural rubber composites , 2007 .

[125]  Chul B. Park,et al.  Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors , 2016 .

[126]  J. Balatinecz,et al.  Surface modification and adhesion mechanisms in woodfiber-polypropylene composites , 1999 .

[127]  Zhongyi Zhang,et al.  Effects of water immersion ageing on the mechanical properties of flax and jute fibre biocomposites evaluated by nanoindentation and flexural testing , 2014 .

[128]  Vera A. Alvarez,et al.  Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites , 2004 .

[129]  Smita Mohanty,et al.  Effect of surface treatments of banana fiber on mechanical, thermal, and biodegradability properties of PLA/banana fiber biocomposites , 2011 .

[130]  M. Fan,et al.  The influence of Spartium junceum L. fibres modified with montmorrilonite nanoclay on the thermal properties of PLA biocomposites , 2015 .

[131]  W. Hall,et al.  A review of bast fibres and their composites. Part 1 – Fibres as reinforcements , 2010 .

[132]  Libo Yan,et al.  Flax fibre and its composites – A review , 2014 .

[133]  A. Mohanty,et al.  Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites , 2000 .