Encoding domain knowledge for propositional planning

Propositional satisfiability checking is a powerful approach to domain-independent planning. In nearly all practical applications, however, there exists an abundance of domain-specific knowledge that can be used to improve the performance of a planning system. This knowledge is traditionally encoded as procedures or rules that are tied to the details of the planning engine. We present a way to encode domain knowledge in a purely declarative, algorithm independent manner. We demonstrate that the same heuristic knowledge can be used by completely different search engines, one systematic, the other using greedy local search. This approach enhances the power of planning as satisfiability : solution times for some problems are reduced from days to seconds.

[1]  Bart Selman,et al.  Learning Declarative Control Rules for Constraint-BAsed Planning , 2000, ICML.

[2]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[3]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[4]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[5]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[6]  Wolfgang Faber,et al.  DLV - A System for Declarative Problem Solving , 2000, ArXiv.

[7]  Michael D. Ernst,et al.  Automatic SAT-Compilation of Planning Problems , 1997, IJCAI.

[8]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[9]  Manuela Veloso Learning by analogical reasoning in general problem-solving , 1992 .

[10]  Jeremy Frank,et al.  When Gravity Fails: Local Search Topology , 1997, J. Artif. Intell. Res..

[11]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[12]  Mark A. Peot,et al.  Suspending Recursion in Causal-Link Planning , 1996, AIPS.

[13]  Daniel S. Weld,et al.  UCPOP: A Sound, Complete, Partial Order Planner for ADL , 1992, KR.

[14]  Steven Vere Temporal Scope of Assertions and Window Cutoff , 1985, IJCAI.

[15]  Patrick Doherty,et al.  TALplanner: an empirical investigation of a temporal logic-based forward chaining planner , 1999, Proceedings. Sixth International Workshop on Temporal Representation and Reasoning. TIME-99.

[16]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[17]  David E. Smith Controlling Backward Inference , 1989, Artif. Intell..

[18]  Maria Fox,et al.  The Automatic Inference of State Invariants in TIM , 1998, J. Artif. Intell. Res..

[19]  John K. Slaney,et al.  Linear Time Near-Optimal Planning in the Blocks World , 1996, AAAI/IAAI, Vol. 2.

[20]  Subbarao Kambhampati,et al.  Failure Driven Dynamic Search Control for Partial Order Planners: An Explanation Based Approach , 1996, Artif. Intell..

[21]  Earl David Sacerdoti,et al.  A Structure for Plans and Behavior , 1977 .

[22]  Daniel S. Weld An Introduction to Least Commitment Planning , 1994, AI Mag..

[23]  David Joslin,et al.  Exploiting Symmetry in Lifted CSPs , 1997, AAAI/IAAI.

[24]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[25]  Fahiem Bacchus,et al.  Using temporal logic to control search in a forward chaining planner , 1996 .

[26]  Lenhart K. Schubert,et al.  Inferring State Constraints for Domain-Independent Planning , 1998, AAAI/IAAI.

[27]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[28]  Craig A. Knoblock Automatically Generating Abstractions for Planning , 1994, Artif. Intell..

[29]  P. Pandurang Nayak,et al.  A Reactive Planner for a Model-based Executive , 1997, IJCAI.

[30]  Bart Selman,et al.  Knowledge compilation and theory approximation , 1996, JACM.

[31]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[32]  David Chapman,et al.  Pengi: An Implementation of a Theory of Activity , 1987, AAAI.

[33]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[34]  Steven Minton,et al.  Quantitative Results Concerning the Utility of Explanation-based Learning , 1988, Artif. Intell..

[35]  Nicola Muscettola,et al.  On the Utility of Bottleneck Reasoning for Scheduling , 1994, AAAI.

[36]  Bart Selman,et al.  Control Knowledge in Planning: Benefits and Tradeoffs , 1999, AAAI/IAAI.