FCA for contextual semantic navigation and information retrieval in heterogeneous information systems

This paper presents an information retrieval methodology which uses formal concept analysis in conjunction with semantics to provide contextual answers to users' queries. User formulates a query on a set of heterogeneous data sources. This set is semantically unified by the proposed notion conceptual context. A context can be global: it defines a semantic space the user can query - or instantaneous- it defines the current position of the user in the semantic space. Our methodology consists first in a pre-treatment providing the global conceptual context and then in an online contextual processing of users' requests, associated to an instantaneous context.This methodology can be applied to heterogeneous data sources such as Web pages, databases, email, personal documents and images, etc. One interest of our approach is to perform a more relevant and refined information retrieval and contextual navigation, closer to the users ' expectation.

[1]  R. Wille Concept lattices and conceptual knowledge systems , 1992 .

[2]  Patrick Brézillon,et al.  Context in Artificial Intelligence: I. A Survey of the Literature , 1999, Comput. Artif. Intell..

[3]  Claudio Carpineto,et al.  Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO , 2004, J. Univers. Comput. Sci..

[4]  Ramanathan V. Guha,et al.  Varieties of Contexts , 2003, CONTEXT.

[5]  Uta Priss,et al.  Lattice-based information retrieval , 2000 .

[6]  Peter Dolog,et al.  Robust Query Processing for Personalized Information Access on the Semantic Web , 2006, FQAS.

[7]  Amedeo Napoli,et al.  Querying a Bioinformatic Data Sources Registry with Concept Lattices , 2005, ICCS.

[8]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[9]  John McCarthy,et al.  Generality in artificial intelligence , 1987, Resonance.

[10]  Nicolas Spyratos,et al.  Context in Artificial Intelligent and Information Modeling , 2002 .

[11]  Pedro M. Domingos,et al.  Learning to map between ontologies on the semantic web , 2002, WWW '02.

[12]  Zakaria Maamar,et al.  A Context Model for Semantic Mediation in Web Services Composition , 2006, ER.

[13]  Chantal Reynaud,et al.  OntoRefiner, a user query refinement interface usable for Semantic Web Portals , 2004, ECAI Workshop on Application of Semantic Web Technologies to Web Communities.

[14]  Rudolf Wille,et al.  Line diagrams of hierarchical concept systems , 1984 .

[15]  Frank van Harmelen,et al.  Contextualizing ontologies , 2004, J. Web Semant..

[16]  Bénédicte Le Grand,et al.  Semantic and Conceptual Context-Aware Information Retrieval , 2009, SITIS.

[17]  Claudio Carpineto,et al.  GALOIS: An Order-Theoretic Approach to Conceptual Clustering , 1993, ICML.