An improved target tracking algorithm based on spatio-temporal context under occlusions

Target tracking is a popular but challenging problem in computer vision field. Due to many aggravating factors such as position transformation, illumination, occlusion, it is difficult to achieve robust target tracking. According to the above constraints, an improved target tracking algorithm based on spatio-temporal context (STC) under occlusions is proposed. On the basis of STC, the proposed method introduces a novel mechanism for dealing with occlusion, the scale update, and the learning rate update to reduce the error update of the model and restrain error accumulation. As a consequence, the tracking performance can be improved efficiently. Extensive experimental results show that our algorithm outperforms the original STC algorithm and some other state-of-the-art algorithms.

[1]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[2]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Philippe C. Cattin,et al.  Tracking the invisible: Learning where the object might be , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[5]  Arnold W. M. Smeulders,et al.  Tracking Aspects of the Foreground against the Background , 2004, ECCV.

[6]  Hanzi Wang,et al.  Graph mode-based contextual kernels for robust SVM tracking , 2011, 2011 International Conference on Computer Vision.

[7]  Bernard Ghanem,et al.  Context-Aware Correlation Filter Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[9]  Navid Nourani-Vatani,et al.  A Study of feature extraction algorithms for optical flow tracking , 2012, ICRA 2012.

[10]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[11]  Yong Liu,et al.  Large Margin Object Tracking with Circulant Feature Maps , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Carlo Tomasi,et al.  Branch and track , 2011, CVPR 2011.

[13]  Ming-Hsuan Yang,et al.  Incremental Learning for Visual Tracking , 2004, NIPS.

[14]  Rui Wang,et al.  Robust tracking via monocular active vision for an intelligent teaching system , 2016, The Visual Computer.

[15]  Qi Tian,et al.  Multi-cue Correlation Filters for Robust Visual Tracking , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[16]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[17]  Huchuan Lu,et al.  Robust Visual Tracking via Multiple Kernel Boosting With Affinity Constraints , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[18]  Bo Yang,et al.  VISATRAM: a real-time vision system for automatic traffic monitoring , 2000, Image Vis. Comput..

[19]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, CVPR.

[20]  Dong Yi,et al.  Robust Online Learned Spatio-Temporal Context Model for Visual Tracking , 2014, IEEE Transactions on Image Processing.

[21]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Simon Lucey,et al.  Learning Background-Aware Correlation Filters for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[23]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[24]  Jim X. Chen,et al.  Robust object tracking with active context learning , 2014, The Visual Computer.

[25]  Xiaonian Wang,et al.  Spatio-temporal Semantic Features for Human Action Recognition , 2012, KSII Trans. Internet Inf. Syst..

[26]  Yiannis Demiris,et al.  Attentional Correlation Filter Network for Adaptive Visual Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).