Error of the Network Approximation for Densely Packed Composites with Irregular Geometry

We introduce a discrete network approximation to the problem of the effective conductivity of the high contrast, highly packed composites in which inclusions are irregularly (randomly) distributed in a hosting medium so that a significant fraction of them may not participate in the conducting spanning cluster. For this class of spacial arrays of inclusions we derive a discrete network approximation and obtain its a priori error estimate. We obtained an explicit dependence of the network approximation and its error on the irregular geometry of the inclusions' array. We use variational techniques to provide rigorous mathematical justification for the approximation and its error estimate.

[1]  Yannis C. Yortsos,et al.  The permeability of strongly disordered systems , 1996 .

[2]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[3]  R. C. McPhedran,et al.  Transport properties of cylinder pairs and of the square array of cylinders , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Schwartz,et al.  Biased-diffusion calculations of electrical transport in inhomogeneous continuum systems. , 1989, Physical review. B, Condensed matter.

[5]  Joel Koplik,et al.  Creeping flow in two-dimensional networks , 1982, Journal of Fluid Mechanics.

[6]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[7]  B. Halperin,et al.  Remarks on percolation and transport in networks with a wide range of bond strengths , 1989 .

[8]  Liliana Borcea,et al.  Low Frequency Electromagnetic Fields in High Contrast Media , 2000 .

[9]  O. Bruno,et al.  The effective conductivity of strongly heterogeneous composites , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  Leonid Berlyand,et al.  Network Approximation in the Limit of¶Small Interparticle Distance of the¶Effective Properties of a High-Contrast¶Random Dispersed Composite , 2001 .

[11]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[12]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[13]  Vinay Ambegaokar,et al.  Hopping Conductivity in Disordered Systems , 1971 .

[14]  G. Temple Static and Dynamic Electricity , 1940, Nature.

[15]  Liliana Borcea,et al.  Network Approximation for Transport Properties of High Contrast Materials , 1998, SIAM J. Appl. Math..

[16]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[17]  S. Kozlov,et al.  Geometric aspects of averaging , 1989 .

[18]  Liliana Borcea,et al.  Asymptotic Analysis of Quasi-Static Transport in High Contrast Conductive Media , 1998, SIAM J. Appl. Math..

[19]  J. Luck,et al.  The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models , 1990 .

[20]  Graeme W. Milton,et al.  Asymptotic studies of closely spaced, highly conducting cylinders , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  R. Van Keer,et al.  On the electrical conductivity of disordered systems : The kernel of the Bethe-Salpeter equation , 1974 .

[22]  Joseph B. Keller,et al.  Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders , 1963 .

[23]  James G. Berryman,et al.  Matching pursuit for imaging high-contrast conductivity , 1999 .

[24]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[25]  Ross C. McPhedran,et al.  Transport properties of touching cylinder pairs and of the square array of touching cylinders , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.