An h-adaptive edge-based smoothed point interpolation method for elasto-plastic analysis of saturated porous media

[1]  G. Narsilio,et al.  Thermo-hydraulic analysis in geothermal energy walls , 2023, Tunnelling and Underground Space Technology.

[2]  Xiaoyu Song,et al.  Computational coupled large‐deformation periporomechanics for dynamic failure and fracturing in variably saturated porous media , 2022, International Journal for Numerical Methods in Engineering.

[3]  L. Gori,et al.  Phase-field modelling of brittle fracture with Smoothed Radial Point Interpolation Methods , 2022, Engineering Analysis with Boundary Elements.

[4]  Y. Chai,et al.  Analysis of the interior acoustic wave propagation problems using the modified radial point interpolation method (M-RPIM) , 2022, Engineering Analysis with Boundary Elements.

[5]  A. Khoshghalb,et al.  An Automatic Adaptive Edge-based Smoothed Point Interpolation Method for Coupled Flow-Deformation Analysis of Saturated Porous Media , 2022, Computers and Geotechnics.

[6]  Guiyong Zhang,et al.  A three-dimensional hybrid immersed smoothed point interpolation method for fluid-structure interactions , 2022, Ocean Engineering.

[7]  Peng Liu,et al.  Stable node-based smoothed radial point interpolation method for the dynamic analysis of the hygro-thermo-magneto-electro-elastic coupling problem , 2022, Engineering Analysis with Boundary Elements.

[8]  A. Gens,et al.  Geotechnical particle finite element method for modeling of soil-structure interaction under large deformation conditions , 2022, Journal of Rock Mechanics and Geotechnical Engineering.

[9]  A. Khoshghalb,et al.  Particle node-based smoothed point interpolation method with stress regularisation for large deformation problems in geomechanics , 2022, Computers and Geotechnics.

[10]  Bin Wang,et al.  Development of an adaptive CTM–RPIM method for modeling large deformation problems in geotechnical engineering , 2021, Acta Geotechnica.

[11]  Chengbo Zhang,et al.  A novel centroid-enriched edge-based smoothed radial point interpolation method for upper bound limit analysis , 2021, Computers and Geotechnics.

[12]  Guiyong Zhang,et al.  A ghost-node immersed smoothed point interpolation method (ghost-node-ISPIM) for fluid-structure interaction problems , 2021, Ocean Engineering.

[13]  Arman Khoshghalb,et al.  An improved node-based smoothed point interpolation method for coupled hydro-mechanical problems in geomechanics , 2021 .

[14]  Guiyong Zhang,et al.  Simulating fluid-structure interactions with a hybrid immersed smoothed point interpolation method , 2021 .

[15]  Liming Zhou,et al.  The hygro-thermo-electro-mechanical coupling edge-based smoothed point interpolation method for the response of functionally graded piezoelectric structure under hygrothermal environment , 2021 .

[16]  Yahui Zhang,et al.  An improved cell-based smoothed radial point interpolation method using condensed shape functions for 3D interior acoustic problems , 2021, Computer Methods in Applied Mechanics and Engineering.

[17]  R. Pitangueira,et al.  A coupled finite element-meshfree smoothed point interpolation method for nonlinear analysis , 2021, Engineering Analysis with Boundary Elements.

[18]  H. Moghaddasi,et al.  Generalized Mapping Rule for Image Point Identification in 3D Bounding Surface Plasticity Models , 2021 .

[19]  Arman Khoshghalb,et al.  Does the upper bound solution property of the Node-based Smoothed Point Interpolation Methods (NSPIMs) hold true in coupled flow-deformation problems of porous media? , 2021 .

[20]  M. Payan,et al.  Limit Analysis of Modified Pseudodynamic Lateral Earth Pressure in Anisotropic Frictional Medium Using Finite-Element and Second-Order Cone Programming , 2021 .

[21]  G. Xie,et al.  Thermal Elastic–Plastic Analysis of Three-Dimensional Structures Using Face-Based Smoothed Point Interpolation Method , 2021 .

[22]  S. Silling,et al.  On the peridynamic effective force state and multiphase constitutive correspondence principle , 2020 .

[23]  Liming Zhou,et al.  Static responses of magneto-electro-elastic structures in moisture field using stabilized node-based smoothed radial point interpolation method , 2020 .

[24]  S. Jazaeri,et al.  Application of the smoothed point interpolation methods in computational geomechanics: A comparative study , 2020 .

[25]  Guirong Liu,et al.  A node-based smoothed radial point interpolation method with linear strain fields for vibration analysis of solids , 2020 .

[26]  Liming Zhou,et al.  A stabilized node-based smoothed radial point interpolation method for functionally graded magneto-electro-elastic structures in thermal environment , 2020 .

[27]  Liming Zhou,et al.  Node-based smoothed radial point interpolation method for electromagnetic-thermal coupled analysis , 2020 .

[28]  Narasimalu Srikanth,et al.  An adaptive isogeometric analysis meshfree collocation method for elasticity and frictional contact problems , 2019, International Journal for Numerical Methods in Engineering.

[29]  G. A. Esgandani,et al.  Fully coupled elastoplastic hydro‐mechanical analysis of unsaturated porous media using a meshfree method , 2019, International Journal for Numerical and Analytical Methods in Geomechanics.

[30]  G. A. Esgandani,et al.  A fully coupled flow-deformation model for cyclic elasto-plastic analysis of multiphase porous media , 2019, Japanese Geotechnical Society Special Publication.

[31]  L. Gori,et al.  G-space theory and weakened-weak form for micropolar media: Application to smoothed point interpolation methods , 2019, Engineering Analysis with Boundary Elements.

[32]  G. R. Liu,et al.  An element-free smoothed radial point interpolation method (EFS-RPIM) for 2D and 3D solid mechanics problems , 2019, Comput. Math. Appl..

[33]  N. Khalili,et al.  A peridynamics model for strain localization analysis of geomaterials , 2018, International Journal for Numerical and Analytical Methods in Geomechanics.

[34]  Kexiang Wei,et al.  A Fully Automatic h-Adaptive Analysis Procedure Using the Edge-Based Smoothed Point Interpolation Method , 2018, International Journal of Computational Methods.

[35]  N. Khalili,et al.  An edge-based smoothed point interpolation method for elasto-plastic coupled hydro-mechanical analysis of saturated porous media , 2017 .

[36]  Majidreza Nazem,et al.  A stable Maximum-Entropy Meshless method for analysis of porous media , 2016 .

[37]  Hung Nguyen-Xuan,et al.  An adaptive selective ES-FEM for plastic collapse analysis , 2016 .

[38]  Guirong Liu,et al.  A cell-based smoothed point interpolation method for flow-deformation analysis of saturated porous media , 2016 .

[39]  S. Sloan,et al.  Frictionless contact formulation for dynamic analysis of nonlinear saturated porous media based on the mortar method , 2016 .

[40]  N. Khalili,et al.  An alternative approach for quasi‐static large deformation analysis of saturated porous media using meshfree method , 2015 .

[41]  M. Randolph,et al.  Large deformation finite element analyses in geotechnical engineering , 2015 .

[42]  Gang Wang,et al.  A stabilized iterative scheme for coupled hydro‐mechanical systems using reproducing kernel particle method , 2014 .

[43]  Nasser Khalili,et al.  A meshfree method for fully coupled analysis of flow and deformation in unsaturated porous media , 2013 .

[44]  Majidreza Nazem,et al.  Large deformation analysis of geomechanics problems by a combined rh-adaptive finite element method , 2013 .

[45]  C. Augarde,et al.  Finite deformation elasto-plastic modelling using an adaptive meshless method , 2013 .

[46]  Ali Pak,et al.  Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method , 2012 .

[47]  Guirong Liu,et al.  An efficient adaptive analysis procedure using the edge-based smoothed point interpolation method (ES-PIM) for 2D and 3D problems , 2012 .

[48]  Guirong Liu,et al.  An Edge-Based Smoothed Point Interpolation Method for Material Discontinuity , 2012 .

[49]  Guiyong Zhang,et al.  MESHFREE CELL-BASED SMOOTHED POINT INTERPOLATION METHOD USING ISOPARAMETRIC PIM SHAPE FUNCTIONS AND CONDENSED RPIM SHAPE FUNCTIONS , 2011 .

[50]  Guirong Liu,et al.  A three-dimensional adaptive analysis using the meshfree node-based smoothed point interpolation method (NS-PIM) , 2011 .

[51]  Xu Xu,et al.  An efficient adaptive analysis procedure for node-based smoothed point interpolation method (NS-PIM) , 2011, Appl. Math. Comput..

[52]  L. Chen,et al.  An adaptive edge-based smoothed point interpolation method for mechanics problems , 2011, Int. J. Comput. Math..

[53]  Nasser Khalili,et al.  A three‐point time discretization technique for parabolic partial differential equations , 2011 .

[54]  H. Nguyen-Xuan,et al.  Assessment of smoothed point interpolation methods for elastic mechanics , 2010 .

[55]  Nasser Khalili,et al.  A stable meshfree method for fully coupled flow-deformation analysis of saturated porous media , 2010 .

[56]  M. Gilbert,et al.  Adaptive element-free Galerkin method applied to the limit analysis of plates , 2010 .

[57]  G. Liu A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory , 2010 .

[58]  Zhengjia He,et al.  A study of multiscale wavelet-based elements for adaptive finite element analysis , 2010, Adv. Eng. Softw..

[59]  Xiangyang Cui,et al.  A cell-based smoothed radial point interpolation method (CS-RPIM) for static and free vibration of solids , 2010 .

[60]  Guiyong Zhang,et al.  Analysis of elastic-plastic problems using edge-based smoothed finite element method , 2009 .

[61]  Guirong Liu,et al.  An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures , 2009 .

[62]  Guirong Liu,et al.  An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids , 2009 .

[63]  Guirong Liu,et al.  EDGE-BASED SMOOTHED POINT INTERPOLATION METHODS , 2008 .

[64]  Ha H. Bui,et al.  Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model , 2008 .

[65]  Guirong Liu A GENERALIZED GRADIENT SMOOTHING TECHNIQUE AND THE SMOOTHED BILINEAR FORM FOR GALERKIN FORMULATION OF A WIDE CLASS OF COMPUTATIONAL METHODS , 2008 .

[66]  Guangyao Li,et al.  A linearly conforming point interpolation method (LC‐PIM) for three‐dimensional elasticity problems , 2007 .

[67]  Gui-Rong Liu,et al.  A regularized least-squares radial point collocation method (RLS-RPCM) for adaptive analysis , 2007 .

[68]  K. Y. Dai,et al.  A LINEARLY CONFORMING POINT INTERPOLATION METHOD (LC-PIM) FOR 2D SOLID MECHANICS PROBLEMS , 2005 .

[69]  T. Belytschko,et al.  Adaptivity for structured meshfree particle methods in 2D and 3D , 2005 .

[70]  Wing Kam Liu,et al.  Adaptive enrichment meshfree simulation and experiment on buckling and post-buckling analysis in sheet metal forming , 2005 .

[71]  Jiun-Shyan Chen,et al.  Filters, reproducing kernel, and adaptive meshfree method , 2003 .

[72]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[73]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[74]  Ping Lin,et al.  Numerical analysis of Biot's consolidation process by radial point interpolation method , 2002 .

[75]  Gui-Rong Liu,et al.  A point interpolation method for simulating dissipation process of consolidation , 2001 .

[76]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[77]  Michael A. Golberg,et al.  Some recent results and proposals for the use of radial basis functions in the BEM , 1999 .

[78]  David R. Owen,et al.  Transfer operators for evolving meshes in small strain elasto-placticity , 1996 .

[79]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[80]  N. Manoharan,et al.  Consolidation analysis of elasto-plastic soil , 1995 .

[81]  S. Sloan,et al.  A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion , 1995 .

[82]  K. Haghighi,et al.  Adaptive Finite Element Analysis of Transient Thermal Problems , 1994 .

[83]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[84]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[85]  I. Babuska,et al.  A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .

[86]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[87]  S. Sloan A fast algorithm for generating constrained delaunay triangulations , 1993 .

[88]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[89]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[90]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[91]  O. C. Zienkiewicz,et al.  A note on localization phenomena and adaptive finite‐element analysis in forming processes , 1990 .

[92]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[93]  Noboru Kikuchi,et al.  Adaptive grid-design methods for finite delement analysis , 1986 .

[94]  I. Babuska,et al.  Adaptive approaches and reliability estimations in finite element analysis , 1979 .

[95]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[96]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[97]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[98]  N. Morgenstern,et al.  Stability Coefficients for Earth Slopes , 1960 .

[99]  Arman Khoshghalb,et al.  A smoothed meshfree method for simulation of frictional embedded discontinuities , 2021 .

[100]  X. Cui,et al.  Coupling Magneto-Electro-Elastic node-based smoothed radial point interpolation method for free vibration and transient analysis of Functionally Graded Magneto-Electro-Elastic structures , 2020 .

[101]  Bo Ren,et al.  An h-adaptive meshfree-enriched finite element method based on convex approximations for the three-dimensional ductile crack propagation simulation , 2020, Comput. Aided Geom. Des..

[102]  Mohammad Rezania,et al.  Numerical analysis of Ballina test embankment on a soft structured clay foundation , 2018 .

[103]  S. Jun,et al.  Two scale meshfree method for the adaptivity of 3-D stress concentration problems , 2000 .

[104]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[105]  J. C. Small,et al.  Elasto-plastic consolidation of soil , 1976 .