mKdV-Related Flows for Legendrian Curves in the Pseudohermitian 3-Sphere

We investigate geometric evolution equations for Legendrian curves in the 3-sphere which are invariant under the action of the unitary group U(2). We define a natural symplectic structure on the space of Legendrian loops, and show that the modified Korteweg-deVries equation, along with its associated hierarchy, are realized as curvature evolutions induced by a sequence of Hamiltonian flows. For the flow among these that induces the mKdV equation, we investigate the geometry of solutions which evolve by rigid motions in U(2). Generalizations of our results to higher-order evolutions and curves in similar geometries are also discussed.

[1]  Annalisa Calini,et al.  Integrable geometric flows for curves in pseudoconformal S3 , 2021 .

[2]  E. Musso,et al.  On the Cauchy-Riemann Geometry of Transversal Curves in the 3-Sphere , 2020, Zurnal matematiceskoj fiziki, analiza, geometrii.

[3]  E. Musso,et al.  The Cauchy–Riemann strain functional for Legendrian curves in the 3-sphere , 2020, 2003.01713.

[4]  Cornelia Vizman,et al.  A dual pair for the contact group , 2019, Mathematische Zeitschrift.

[5]  A. Mondino,et al.  Homotopy properties of horizontal loop spaces and applications to closed sub-Riemannian geodesics , 2015, Transactions of the American Mathematical Society, Series B.

[6]  P. Byrd,et al.  Handbook of Elliptic Integrals for Engineers and Physicists , 2014 .

[7]  T. Ivey,et al.  Integrable Flows for Starlike Curves in Centroaffine Space , 2013, 1303.1259.

[8]  Lynn Heller Constrained Willmore Tori and Elastic Curves in 2-Dimensional Space Forms , 2013, 1303.1445.

[9]  E. Musso,et al.  Motions of Curves in the Projective Plane Inducing the Kaup-Kupershmidt Hierarchy , 2012, 1205.5329.

[10]  Cornelia Vizman Induced differential forms on manifolds of functions , 2011, 1111.3889.

[11]  E. Musso,et al.  Hamiltonian flows on null curves , 2009, 0911.4467.

[12]  T. Ivey,et al.  Remarks on KdV-type flows on star-shaped curves , 2008, 0808.3593.

[13]  John B. Etnyre,et al.  Legendrian and Transversal Knots , 2003, math/0306256.

[14]  John B. Etnyre,et al.  Knots and Contact Geometry I: Torus Knots and the Figure Eight Knot , 2001 .

[15]  T. Ivey,et al.  Knot types, Floquet spectra, and finite-gap solutions of the vortex filament equation , 2001 .

[16]  T. Ivey,et al.  TOPOLOGY AND SINE-GORDON EVOLUTION OF CONSTANT TORSION CURVES , 1999 .

[17]  Joel Langer,et al.  Curve motion inducing modified Korteweg-de Vries systems , 1998 .

[18]  U. Pinkall Hamiltonian flows on the space of star-shaped curves , 1995 .

[19]  P. Santini,et al.  An elementary geometric characterization of the integrable motions of a curve , 1994 .

[20]  Petrich,et al.  Solitons, Euler's equation, and vortex patch dynamics. , 1992, Physical review letters.

[21]  Petrich,et al.  The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. , 1991, Physical review letters.

[22]  Joel Langer,et al.  Poisson geometry of the filament equation , 1991 .

[23]  M. Wadati,et al.  Simple Derivation of Bäcklund Transformation from Riccati Form of Inverse Method , 1975 .

[24]  M. Wadati Bäcklund Transformation for Solutions of the Modified Korteweg-de Vries Equation , 1974 .

[25]  Emilio Musso Liouville integrability of a variational problem for Legendrian curves in the three-dimensional sphere; , 2002 .

[26]  D. F. Lawden Elliptic Functions and Applications , 1989 .

[27]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[28]  S. M. Webster,et al.  Pseudo-Hermitian structures on a real hypersurface , 1978 .

[29]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .