Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome☆☆☆

[1]  I. Nishino,et al.  Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease , 2013, EMBO molecular medicine.

[2]  Z. Qin,et al.  Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats , 2013, Experimental Gerontology.

[3]  P. Costelli,et al.  Autophagic degradation contributes to muscle wasting in cancer cachexia. , 2013, The American journal of pathology.

[4]  Yan G Zhao,et al.  Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration , 2013, The Journal of cell biology.

[5]  Steven P. Gygi,et al.  Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization , 2013, Nature.

[6]  Michael F. N. O'Leary,et al.  Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. , 2013, American journal of physiology. Cell physiology.

[7]  M. Sandri,et al.  Mitochondrial biogenesis and fragmentation as regulators of protein degradation in striated muscles. , 2013, Journal of molecular and cellular cardiology.

[8]  S. Geuna,et al.  Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. , 2013, The Journal of clinical investigation.

[9]  M. Sandri,et al.  Cellular and molecular mechanisms of muscle atrophy , 2013, Disease Models & Mechanisms.

[10]  E. Bertini,et al.  Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy , 2012, Nature Genetics.

[11]  L. Leinwand,et al.  Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy , 2012, EMBO molecular medicine.

[12]  Nobuyuki Itoh,et al.  Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine , 2012, Nature Medicine.

[13]  M. Hall,et al.  Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy , 2013, Skeletal Muscle.

[14]  B. Spiegelman,et al.  A PGC-1α Isoform Induced by Resistance Training Regulates Skeletal Muscle Hypertrophy , 2012, Cell.

[15]  Pham Nguyen Quy,et al.  Proteasome-dependent Activation of Mammalian Target of Rapamycin Complex 1 (mTORC1) Is Essential for Autophagy Suppression and Muscle Remodeling Following Denervation* , 2012, The Journal of Biological Chemistry.

[16]  P. Gluckman,et al.  The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. , 2012, Cell metabolism.

[17]  D. Rotin,et al.  The Ubiquitin Ligase Nedd4-1 Participates in Denervation-Induced Skeletal Muscle Atrophy in Mice , 2012, PloS one.

[18]  Kenneth S Campbell,et al.  Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. , 2012, American journal of physiology. Cell physiology.

[19]  S. Hazen,et al.  Hyperammonemia-mediated autophagy in skeletal muscle contributes to sarcopenia of cirrhosis. , 2012, American journal of physiology. Endocrinology and metabolism.

[20]  M. Sandri,et al.  Autophagy and Skeletal Muscles in Sepsis , 2012, PloS one.

[21]  Roberto Bottinelli,et al.  The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms , 2012, The Journal of physiology.

[22]  S. Sze,et al.  Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. , 2012, American journal of physiology. Cell physiology.

[23]  C. Angelini,et al.  Impaired autophagy contributes to muscle atrophy in glycogen storage disease type II patients , 2012, Autophagy.

[24]  S. Gygi,et al.  Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy , 2012, The Journal of cell biology.

[25]  Michael F. N. O'Leary,et al.  Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. , 2012, American journal of physiology. Cell physiology.

[26]  M. Matzuk,et al.  Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway , 2012, Proceedings of the National Academy of Sciences.

[27]  A. Goldberg,et al.  The p97/VCP ATPase is critical in muscle atrophy and the accelerated degradation of muscle proteins , 2012, The EMBO journal.

[28]  C. Angelini,et al.  The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII) , 2012, Cell Death and Differentiation.

[29]  R. Rizzuto,et al.  Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. , 2012, Human molecular genetics.

[30]  S. Bhatnagar,et al.  TWEAK and TRAF6 regulate skeletal muscle atrophy , 2012, Current opinion in clinical nutrition and metabolic care.

[31]  G. Millet,et al.  Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. , 2012, Journal of applied physiology.

[32]  E. Kudryashova,et al.  Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. , 2012, The Journal of clinical investigation.

[33]  S. Rikka,et al.  Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy* , 2012, The Journal of Biological Chemistry.

[34]  G. Van den Berghe,et al.  Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. , 2012, Endocrinology.

[35]  A. Ballabio,et al.  A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB , 2012, The EMBO journal.

[36]  S. Bhatnagar,et al.  The E3 Ubiquitin Ligase TRAF6 Intercedes in Starvation-Induced Skeletal Muscle Atrophy through Multiple Mechanisms , 2012, Molecular and Cellular Biology.

[37]  Herman I. May,et al.  Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis , 2012, Nature.

[38]  Chad E. Grueter,et al.  Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice , 2012, Proceedings of the National Academy of Sciences.

[39]  Marc Francaux,et al.  Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise , 2011, European Journal of Applied Physiology.

[40]  M. Sandri,et al.  Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles , 2011, Autophagy.

[41]  M. Fornaro,et al.  Gαi2 Signaling Promotes Skeletal Muscle Hypertrophy, Myoblast Differentiation, and Muscle Regeneration , 2011, Science Signaling.

[42]  D. Glass,et al.  The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. , 2011, Developmental cell.

[43]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[44]  Roberto Zoncu,et al.  mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase , 2011, Science.

[45]  S. Bodine,et al.  Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids , 2011, The Journal of physiology.

[46]  Kenneth S. Campbell,et al.  Effective fiber hypertrophy in satellite cell-depleted skeletal muscle , 2011, Development.

[47]  F. Trensz,et al.  The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice , 2011, BMC musculoskeletal disorders.

[48]  B. Monsarrat,et al.  Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1 , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[50]  R. Youle,et al.  Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. , 2011, Antioxidants & redox signaling.

[51]  L. Deldicque,et al.  Prevention of muscle disuse atrophy by MG132 proteasome inhibitor , 2011, Muscle & nerve.

[52]  Zhen Yan,et al.  PGC-1 (cid:1) Promotes Nitric Oxide Antioxidant Defenses and Inhibits FOXO Signaling Against Cardiac Cachexia in Mice , 2011 .

[53]  S. Powers,et al.  Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. , 2011, Journal of applied physiology.

[54]  P. Tien,et al.  Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice. , 2011, Human gene therapy.

[55]  S. Bhatnagar,et al.  Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice , 2010, The Journal of cell biology.

[56]  N. Maraldi,et al.  Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration , 2010, Nature Medicine.

[57]  M. Sandri,et al.  Mitochondrial Biogenesis and Fragmentation as Regulators of Muscle Protein Degradation , 2010, Current hypertension reports.

[58]  G. Lanfranchi,et al.  JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy , 2010, The Journal of cell biology.

[59]  E. Olson,et al.  Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases , 2010, Cell.

[60]  Li Yu,et al.  C. elegans Screen Identifies Autophagy Genes Specific to Multicellular Organisms , 2010, Cell.

[61]  Luca Scorrano,et al.  Mitochondrial fission and remodelling contributes to muscle atrophy , 2010, The EMBO journal.

[62]  A. Goldberg,et al.  Peroxisome Proliferator-activated Receptor γ Coactivator 1α or 1β Overexpression Inhibits Muscle Protein Degradation, Induction of Ubiquitin Ligases, and Disuse Atrophy* , 2010, The Journal of Biological Chemistry.

[63]  M. Sandri Autophagy in skeletal muscle , 2010, FEBS letters.

[64]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[65]  C. Leeuwenburgh,et al.  Skeletal muscle autophagy and apoptosis during aging: Effects of calorie restriction and life-long exercise , 2010, Experimental Gerontology.

[66]  A. Poupon,et al.  The Translation Regulatory Subunit eIF3f Controls the Kinase-Dependent mTOR Signaling Required for Muscle Differentiation and Hypertrophy in Mouse , 2010, PloS one.

[67]  M. Hoch,et al.  Chaperone-Assisted Selective Autophagy Is Essential for Muscle Maintenance , 2010, Current Biology.

[68]  Ivan Dikic,et al.  Nix is a selective autophagy receptor for mitochondrial clearance , 2010, EMBO reports.

[69]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[70]  Robert B. White,et al.  Dynamics of muscle fibre growth during postnatal mouse development , 2010, BMC Developmental Biology.

[71]  D. Metzger,et al.  Autophagy is required to maintain muscle mass. , 2009, Cell metabolism.

[72]  B. Spiegelman,et al.  Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging , 2009, Proceedings of the National Academy of Sciences.

[73]  S. Wing,et al.  USP19-deubiquitinating enzyme regulates levels of major myofibrillar proteins in L6 muscle cells. , 2009, American journal of physiology. Endocrinology and metabolism.

[74]  C. Reggiani,et al.  Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[75]  S. Gygi,et al.  During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation , 2009, The Journal of cell biology.

[76]  G. Supinski,et al.  Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction. , 2009, American journal of physiology. Lung cellular and molecular physiology.

[77]  K. Patel,et al.  Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity , 2009, Proceedings of the National Academy of Sciences.

[78]  D. Calderwood,et al.  The E3 ubiquitin ligase specificity subunit ASB2β is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation , 2009, Cell Death and Differentiation.

[79]  M. Komatsu,et al.  A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. , 2009, Molecular cell.

[80]  V. Hill,et al.  Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. , 2008, Human molecular genetics.

[81]  A. Brunet,et al.  The FoxO code , 2008, Oncogene.

[82]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[83]  A. Goldberg,et al.  FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. , 2007, Cell metabolism.

[84]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[85]  S. Rakhilin,et al.  The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. , 2007, Cell metabolism.

[86]  Mi-Sung Kim,et al.  Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. , 2007, The Journal of clinical investigation.

[87]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[88]  A. Salvetti,et al.  Unexpected cardiotoxicity in haematological bortezomib treated patients , 2007 .

[89]  M. Sandri,et al.  S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. , 2007, American journal of physiology. Cell physiology.

[90]  S. Lecker,et al.  Atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 are associated with uterine smooth muscle involution in the postpartum period. , 2007, American journal of physiology. Regulatory, integrative and comparative physiology.

[91]  S. Bodine,et al.  Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. , 2007, Journal of applied physiology.

[92]  Jiandie D. Lin,et al.  PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription , 2006, Proceedings of the National Academy of Sciences.

[93]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[94]  K. Ikeda,et al.  A novel ubiquitin‐binding protein ZNF216 functioning in muscle atrophy , 2006, The EMBO journal.

[95]  D. Taillandier,et al.  Lysosomal proteolysis in skeletal muscle. , 2005, The international journal of biochemistry & cell biology.

[96]  V. Baracos,et al.  USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. , 2005, American journal of physiology. Endocrinology and metabolism.

[97]  V. Sirri,et al.  Degradation of MyoD Mediated by the SCF (MAFbx) Ubiquitin Ligase* , 2005, Journal of Biological Chemistry.

[98]  Cam Patterson,et al.  Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Da-Zhi Wang,et al.  Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. , 2004, The Journal of clinical investigation.

[100]  M. Matsui,et al.  In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. , 2003, Molecular biology of the cell.

[101]  D. Attaix,et al.  Class III phosphoinositide 3-kinase--Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. , 2003, The Biochemical journal.

[102]  Bruce M. Spiegelman,et al.  Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction , 2003, Nature.

[103]  A. Goldberg,et al.  Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[104]  D. Attaix,et al.  Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. , 2001, The Biochemical journal.

[105]  D J Glass,et al.  Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy , 2001, Science.

[106]  Brian A. Hemmings,et al.  Protein Kinase SGK Mediates Survival Signals by Phosphorylating the Forkhead Transcription Factor FKHRL1 (FOXO3a) , 2001, Molecular and Cellular Biology.

[107]  J. Haspel,et al.  Selective expression of Cre recombinase in skeletal muscle fibers , 2000, Genesis.

[108]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.