Experimental quantum Hamiltonian identification from measurement time traces.

Identifying Hamiltonian of a quantum system is of vital importance for quantum information processing. In this article, we realized and benchmarked a quantum Hamiltonian identification algorithm recently proposed (Zhang and Sarovar, 2014). we realized the algorithm on a liquid nuclear magnetic resonance quantum information processor using two types of working media with different forms of Hamiltonian. Our experiment realized the quantum identification algorithm based on free induction decay signals. We also showed how to process data obtained in a practical experiment. We studied the influence of decoherence by numerical simulations. Our experiments and simulations demonstrate that the algorithm is effective and robust.

[1]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[2]  E. Knill,et al.  Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods , 2008, 0803.1982.

[3]  Henrik Gesmar,et al.  Application of the Linear Prediction Method to NMR Spectroscopy , 1991 .

[4]  Franco Nori,et al.  Coupling strength estimation for spin chains despite restricted access , 2008, 0810.2866.

[5]  A. I. Lvovsky,et al.  Complete temporal characterization of a single photon , 2014, Light: Science & Applications.

[6]  D. Burgarth,et al.  Quantum system identification. , 2011, Physical review letters.

[7]  Yang Liu,et al.  First experimental demonstration of an exact quantum search algorithm in nuclear magnetic resonance system , 2015 .

[8]  Yao Lu,et al.  Experimental digital quantum simulation of temporal–spatial dynamics of interacting fermion system , 2015 .

[9]  Shao-Ming Fei Adaptive-measurement based quantum tomography , 2016 .

[10]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[11]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[12]  Andrew D. Greentree,et al.  Identifying an experimental two-state Hamiltonian to arbitrary accuracy (11 pages) , 2005 .

[13]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[14]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[15]  Xinhua Peng,et al.  Experimental simulation of the Unruh effect on an NMR quantum simulator , 2016 .

[16]  Simon J. Devitt,et al.  Scheme for direct measurement of a general two-qubit Hamiltonian (5 pages) , 2006 .

[17]  David S. Stephenson,et al.  Linear prediction and maximum entropy methods in NMR spectroscopy , 1988 .

[18]  Dexter Kozen,et al.  New , 2020, MFPS.

[19]  Zhang-Qi Yin,et al.  Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator , 2015, 1509.03763.

[20]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[21]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[22]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[23]  Jiangfeng Du,et al.  Detection of radio-frequency field with a single spin in diamond , 2016 .

[24]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[25]  P. J. Hore,et al.  NMR data processing using the maximum entropy method , 1985 .

[26]  J. Skilling,et al.  Maximum entropy signal processing in practical NMR spectroscopy , 1984, Nature.

[27]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[28]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[29]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[30]  Bei Zeng,et al.  Quantum state and process tomography via adaptive measurements , 2016, 1604.06277.

[31]  Koji Maruyama,et al.  Indirect Hamiltonian identification through a small gateway , 2009, 0903.0612.

[32]  Guanru Feng,et al.  Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system , 2016 .

[33]  Dong-Ling Deng,et al.  Hamiltonian tomography for quantum many-body systems with arbitrary couplings , 2015, 1505.00665.

[34]  Jun Zhang,et al.  Quantum Hamiltonian identification from measurement time traces. , 2014, Physical review letters.

[35]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[36]  Zhengfeng Ji,et al.  Joint product numerical range and geometry of reduced density matrices , 2016, 1606.07422.

[37]  Quantum computation: Spinning towards scalable circuits , 2012, Nature.

[38]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[39]  Tao Zhou Quantum measurement in coherence-vector representation , 2016 .