SAPIUM: A Generic Framework for a Practical and Transparent Quantification of Thermal-Hydraulic Code Model Input Uncertainty
暂无分享,去创建一个
Jinzhao Zhang | Francesc Reventos | Rafael Mendizábal | Jean Baccou | Alessandro Petruzzi | Takeshi Takeda | Mathieu Couplet | Guillaume Damblin | Bertrand Iooss | Deog-Yeon Oh | Philippe Fillion | Tomasz Skorek | Nils Sandberg | T. Takeda | M. Couplet | B. Iooss | G. Damblin | Jinzhao Zhang | F. Reventós | A. Petruzzi | J. Baccou | D. Oh | P. Fillion | R. Mendizábal | T. Skorek | N. Sandberg
[1] Christian Genest,et al. Combining Probability Distributions: A Critique and an Annotated Bibliography , 1986 .
[2] Timothy G. Trucano,et al. Predictive Capability Maturity Model for computational modeling and simulation. , 2007 .
[3] Luc Pronzato,et al. Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.
[4] Ralph C. Smith,et al. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes , 2016, J. Comput. Phys..
[5] François M. Hemez,et al. Defining predictive maturity for validated numerical simulations , 2010 .
[6] S. S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits , 1941 .
[7] G. E. Wilson,et al. The role of the PIRT process in experiments, code development and code applications associated with Reactor Safety analysis , 1998 .
[8] A. Raftery,et al. Probabilistic forecasts, calibration and sharpness , 2007 .
[9] Bertrand Iooss,et al. Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties , 2013, J. Simulation.
[10] Jinzhao Zhang,et al. Development of good practice guidance for quantification of thermal-hydraulic code model input uncertainty , 2019 .
[11] Pierre Probst,et al. DIPE: Determination of Input Parameters Uncertainties Methodology Applied to CATHARE V2.5_1 , 2008 .
[12] Jérôme Idier,et al. Bayesian Approach to Inverse Problems: Idier/Bayesian , 2010 .
[13] Robert P. Martin. Quantifying Phenomenological Importance in Best-Estimate Plus Uncertainty Analyses , 2011 .
[14] W. Oberkampf,et al. Model validation and predictive capability for the thermal challenge problem , 2008 .
[15] Jinzhao Zhang,et al. Development of a Pragmatic Approach to Model Input Uncertainty Quantification for BEPU Applications , 2018, Nuclear Technology.
[16] Matthew F. Barone,et al. Measures of agreement between computation and experiment: Validation metrics , 2004, J. Comput. Phys..
[17] Seung Wook Lee,et al. Validation and uncertainty quantification for FEBA, FLECHT–SEASET, and PERICLES tests incorporating multi-scaling effects , 2018 .
[18] Didier Dubois,et al. Possibility theory in information fusion , 2002, NMR.
[19] B. Iooss,et al. A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.
[20] Sébastien Destercke,et al. Methods for the evaluation and synthesis of multiple sources of information applied to nuclear computer codes , 2008 .
[21] J. Nagel. Bayesian techniques for inverse uncertainty quantification , 2017 .
[22] F. D’Auria,et al. Standardized Consolidated Calculated and Reference Experimental Database (SCCRED): A Supporting Tool for V&V and Uncertainty Evaluation of Best-Estimate System Codes for Licensing Applications , 2016 .
[23] Wei Chen,et al. Toward a Better Understanding of Model Validation Metrics , 2011 .
[24] Christopher J. Roy,et al. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing , 2011 .
[25] A. Petruzzi,et al. The CASUALIDAD Method for Uncertainty Evaluation of Best-Estimate System Thermal-Hydraulic Calculations , 2019, Nuclear Technology.