Les treillis de Galois Alpha

Our basic representation of the data is a Galois lattice, i.e. a lattice in which the terms of a representation language are partitioned into equivalence classes w.r.t. their extent (the extent of a term is the part of the instance set that satisfies the term). We propose here to simplify our view of the data, still conserving the Galois lattice formal structure. For that purpose we use a preliminary partition of the instance set, representing the association of a type to each instance. By redefining the notion of extent of a term in order to cope, to a certain degree (denoted as a), with this partition, we define a particular family of Galois lattices denoted as Alpha Galois lattices.

[1]  Rokia Missaoui,et al.  Generating frequent itemsets incrementally: two novel approaches based on Galois lattice theory , 2002, J. Exp. Theor. Artif. Intell..

[2]  Jean-Gabriel Ganascia TDIS : an Algebraic Formalization , 1993, IJCAI.

[3]  Gerd Stumme,et al.  Conceptual Knowledge Discovery and Data Analysis , 2000, ICCS.

[4]  Bernhard Ganter,et al.  Pattern Structures and Their Projections , 2001, ICCS.

[5]  Bernhard Ganter,et al.  Formal Concept Analysis: Logical Foundations , 1999 .

[6]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[7]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[8]  Jean Sallantin,et al.  Structural Machine Learning with Galois Lattice and Graphs , 1998, ICML.

[9]  Kitsana Waiyamai,et al.  Knowledge Discovery from Very Large Databases Using Frequent Concept Lattices , 2000, ECML.

[10]  Henry Soldano,et al.  Tabata: A Learning Algorithm Performing a Bidirectional Search in a Reduced Search Space Using a Tabu Strategy , 1998, ECAI.

[11]  Rokia Missaoui,et al.  Building Concept (Galois) Lattices from Parts: Generalizing the Incremental Methods , 2001, ICCS.

[12]  Nathalie Pernelle,et al.  Automatic Construction and Refinement of a Class Hierarchy over Multi-valued Data , 2001, PKDD.

[13]  O. Ridoux,et al.  Introduction to logical information systems , 2004, Inf. Process. Manag..

[14]  Gerd Stumme,et al.  PASCAL : un algorithme d extraction des motifs fréquents , 2002, Tech. Sci. Informatiques.

[15]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[16]  Zdzislaw Pawlak,et al.  Rough Sets, Rough Relations and Rough Functions , 1996, Fundam. Informaticae.

[17]  Malik Ghallab,et al.  Topological Visual Localization Using Decentralized Galois Lattices , 2004, ECAI.

[18]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[19]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data , 2000 .

[20]  Nathalie Pernelle,et al.  ZooM: a nested Galois lattices-based system for conceptual clustering , 2002, J. Exp. Theor. Artif. Intell..

[21]  Rokia Missaoui,et al.  A partition-based approach towards constructing Galois (concept) lattices , 2002, Discret. Math..

[22]  Yves Bastide,et al.  Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis , 2001, KI/ÖGAI.

[23]  Engelbert Mephu Nguifo,et al.  IGLUE: an instance-based learning system over lattice theory , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[24]  Gerd Stumme,et al.  Computing iceberg concept lattices with T , 2002, Data Knowl. Eng..