Using the MODIS land surface temperature product for mapping permafrost: an application to northern Québec and Labrador, Canada

The Land Surface Temperature (LST) products of the Moderate Resolution Imaging Spectroradiometers (MODIS) aboard NASA's Terra and Aqua satellites were used to develop maps of annual near-surface temperatures for comparison with the spatial distribution of permafrost and boundaries of the permafrost zones. The methodological approach involved fitting a sinusoidal model over the daily LST readings to reproduce seasonal thermal variations near the ground for each 1-km2 pixel. Calculations of mean annual surface temperatures and of thawing and freezing indices led to the development of regional maps, in this case for northern Quebec and Labrador. The maps show the expected geographic distribution of near-surface temperatures and acceptably represent known permafrost boundaries. Ongoing efforts to incorporate snow and vegetation cover from complementary remotely sensed data should improve the ground surface temperature mapping capability based on this approach. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Arnaud Mialon,et al.  Daily Microwave-Derived Surface Temperature over Canada/Alaska , 2007 .

[2]  S. Hachem Cartographie des températures de surface, des indices de gel et de dégel et de la répartition spatiale du pergélisol à l'aide du Moderate Resolution Imaging Spectroradiometer (MODIS) , 2008 .

[3]  Z. Wan New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products , 2008 .

[4]  R. Myneni,et al.  Climate‐related vegetation characteristics derived from Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index and normalized difference vegetation index , 2004 .

[5]  R. Brown,et al.  Permafrost distribution in the southern part of the discontinuous zone in Québec and Labrador , 2011 .

[6]  J. Gray,et al.  Répartition estivale des surfaces enneigées en Ungava, Nouveau-Québec , 2007 .

[7]  Kenneth M. Hinkel,et al.  Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993 1999 , 2001 .

[8]  J. Comiso Warming trends in the Arctic from clear sky satellite observations , 2003 .

[9]  Claire L. Parkinson,et al.  Satellite-Observed Changes in the Arctic , 2004 .

[10]  Samuel I. Outcalt,et al.  A Computational Method for Prediction and Regionalization of Permafrost , 1987 .

[11]  F. Nelson,et al.  THE N-FACTOR AS A TOOL IN GEOCRYOLOGICAL MAPPING: SEASONAL THAW IN THE KUPARUK RIVER BASIN, ALASKA , 2001 .

[12]  Kyung-Soo Han,et al.  An analysis of GOES and NOAA derived land surface temperatures estimated over a boreal forest , 2004 .

[13]  Ranga B. Myneni,et al.  Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems , 2004 .

[14]  K. Goïta,et al.  Land Surface Temperature Time Series Derived from Weekly AVHRR GVI Composite Datasets: Potential and Constraints for Northern Latitudes , 1997 .

[15]  Sister Johnell Dillon A Philistine asks for equal time , 1969 .

[16]  V. Romanovsky,et al.  A model for regional‐scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures , 2003 .

[17]  M. Seguin,et al.  Le pergélisol au Québec nordique : bilan et perspectives , 2007 .

[18]  M. Smith,et al.  Climate and the limits of permafrost: a zonal analysis , 2002 .

[19]  Michael W. Smith,et al.  EXPLORING THE LIMITS OF PERMAFROST. , 1998 .