Entropy Multiparticle Correlation Expansion for a Crystal

As first shown by H. S. Green in 1952, the entropy of a classical fluid of identical particles can be written as a sum of many-particle contributions, each of them being a distinctive functional of all spatial distribution functions up to a given order. By revisiting the combinatorial derivation of the entropy formula, we argue that a similar correlation expansion holds for the entropy of a crystalline system. We discuss how one- and two-body entropies scale with the size of the crystal, and provide fresh numerical data to check the expectation, grounded in theoretical arguments, that both entropies are extensive quantities.

[1]  R. J. Speedy The entropy of a glass , 1993 .

[2]  R. E. Nettleton,et al.  Expression in Terms of Molecular Distribution Functions for the Entropy Density in an Infinite System , 1958 .

[3]  P. Tarazona,et al.  A density functional theory of melting , 1984 .

[4]  Ludovic Berthier,et al.  Configurational entropy of glass-forming liquids. , 2019, The Journal of chemical physics.

[5]  M. Donato,et al.  Entropy and multi-particle correlations in two-dimensional lattice gases , 1999 .

[6]  Phase behavior of a fluid with a double Gaussian potential displaying waterlike features. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  P. Giaquinta,et al.  Statistical Entropy of a Lattice-Gas Model: Multiparticle Correlation Expansion , 1999 .

[8]  M. D’Alessandro Multiparticle correlation expansion of relative entropy in lattice systems , 2016, 1607.02038.

[9]  P. Giaquinta,et al.  The entropy multiparticle-correlation expansion for a mixture of spherical and elongated particles , 2004, cond-mat/0412428.

[10]  Evans,et al.  Direct entropy calculation from computer simulation of liquids. , 1989, Physical review. A, General physics.

[11]  S. Sastry,et al.  Determination of onset temperature from the entropy for fragile to strong liquids. , 2017, The Journal of chemical physics.

[12]  G. Malescio,et al.  On the determination of phase boundaries via thermodynamic integration across coexistence regions. , 2015, The Journal of chemical physics.

[13]  F. Saija,et al.  Entropy, correlations, and ordering in two dimensions , 2000 .

[14]  A. Sergi,et al.  Freezing of soft-core bosons at zero temperature: A variational theory , 2018, Physical Review B.

[15]  Werner Krauth,et al.  Two-step melting in two dimensions: first-order liquid-hexatic transition. , 2011, Physical review letters.

[16]  F. Saija,et al.  ENTROPY AND FLUID-FLUID SEPARATION IN NONADDITIVE HARD-SPHERE MIXTURES , 1998 .

[17]  Entropy and Correlations in a Fluid of Hard Spherocylinders: The Onset of Nematic and Smectic Order , 2002, cond-mat/0204423.

[18]  Andrés Santos,et al.  Residual Multiparticle Entropy for a Fractal Fluid of Hard Spheres , 2018, Entropy.

[19]  N. Clisby,et al.  Computation of the equilibrium three-particle entropy for dense atomic fluids by molecular dynamics simulation. , 2019, The Journal of chemical physics.

[20]  P. Giaquinta,et al.  Ground state of weakly repulsive soft-core bosons on a sphere , 2019, Physical Review A.

[21]  A. G. Schlijper,et al.  Convergence of the cluster-variation method in the thermodynamic limit , 1983 .

[22]  J. Oldroyd Molecular Theory of Fluids , 1953, Nature.

[23]  G. Navascués,et al.  Thermodynamic consistency of the hard‐sphere solid distribution function , 1996 .

[24]  Guozhong An A note on the cluster variation method , 1988 .

[25]  P. Giaquinta,et al.  About entropy and correlations in a fluid of hard spheres , 1992 .

[26]  M. Plischke,et al.  Equilibrium statistical physics , 1988 .

[27]  J. Hernando Thermodynamic potentials and distribution functions: I. A general expression for the entropy , 1990 .

[28]  D. Frenkel Order through entropy. , 2015, Nature materials.

[29]  Alessandro Pelizzola,et al.  Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models , 2005, ArXiv.

[30]  Giaquinta,et al.  Entropy and the freezing of simple liquids. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[31]  Antje Sommer,et al.  Theory Of Simple Liquids , 2016 .

[32]  M. Ferrario,et al.  Statistical geometry of hard particles on a sphere: analysis of defects at high density , 1993 .

[33]  A. Marco Saitta,et al.  Statistical entropy and density maximum anomaly in liquid water , 2003 .

[34]  G. Malescio,et al.  Characterization of the structural collapse undergone by an unstable system of ultrasoft particles , 2016 .