Terahertz surface magnetoplasmons modulation with magnetized InSb hole array sheet

Abstract Magnetized semiconductors are generally understood to support bulk cyclotron resonance due to the free electrons’ movement driven by Lorentz force, while another surface resonance, i.e. magnetoplasmon polariton, can also exist provided a properly configured magnetic field. Here, we show that a dominate extraordinary surface magnetoplasmon resonance can be directly excited with the indium antimonide (InSb) hole array sheet under perpendicular DC magnetic field (Faraday configuration) at the terahertz regime. By applying quasi-momentum matching to the structured InSb sheet, the magnetoplasmon resonance frequencies can be theoretically calculated, which correspond well with the simulated results. In addition, the magnetoplasmon resonance frequencies can be strongly modulated by changing the applied DC magnetic field strength as well as the environmental temperature. The magneto-thermal tunability of the InSb hole array sheet may have potential applications in active photonic devices.

[1]  A. Lakhtakia,et al.  Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet. , 2009, Optics letters.

[2]  M. Soljačić,et al.  Topological magnetoplasmon , 2016, Nature Communications.

[3]  Akhlesh Lakhtakia,et al.  Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. , 2008, Optics express.

[4]  Kamil Postava,et al.  Experimental demonstration of magnetoplasmon polariton at InSb(InAs)/dielectric interface for terahertz sensor application , 2017, Scientific Reports.

[5]  E. Palik,et al.  Infrared and microwave magnetoplasma effects in semiconductors , 1970 .

[6]  D. Bykov,et al.  Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films , 2009 .

[7]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[8]  M. Vitiello,et al.  Optoelectronic devices, plasmonics, and photonics with topological insulators , 2017, 1904.00624.

[9]  W. Knap,et al.  Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States. , 2016, Nano letters.

[10]  M. Polini,et al.  Theory of the plasma-wave photoresponse of a gated graphene sheet , 2013, 1307.0734.

[11]  E. Burstein,et al.  Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors , 1974 .

[12]  G. Martínez,et al.  Magnetoplasmon excitations in Graphene , 2007 .

[13]  R. F. Wallis,et al.  Coupled surface magnetoplasmon-optic-phonon polariton modes on InSb , 1976 .

[14]  I Gaponenko,et al.  Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. , 2012, Nano letters.

[15]  Erik Jan Geluk,et al.  Surface plasmon lasing observed in metal hole arrays. , 2013, Physical review letters.

[16]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[17]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[18]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[19]  Antonio Politano,et al.  Plasmon modes in graphene: status and prospect. , 2014, Nanoscale.

[20]  Biao Yang,et al.  Stretchable Photonic ‘Fermi Arcs’ in Twisted Magnetized Plasma , 2018 .

[21]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[22]  R. F. Wallis,et al.  Theory of Surface Magnetoplasmons in Semiconductors , 1972 .

[23]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[24]  W. Knap,et al.  Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response , 2016, Scientific Reports.

[25]  One-way helical electromagnetic wave propagation supported by magnetized plasma , 2014, Scientific reports.

[26]  Jeho Park,et al.  Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications , 2015, Sensors.

[27]  Matthew Brahlek,et al.  Observation of Magnetoplasmons in Bi2Se3 Topological Insulator , 2015 .

[28]  Achanta Venu Gopal,et al.  Enhanced magneto-optical effects in magnetoplasmonic crystals. , 2011, Nature nanotechnology.

[29]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[30]  Cheng-Wei Qiu,et al.  Color generation via subwavelength plasmonic nanostructures. , 2015, Nanoscale.