Combinatorial aspects of L-convex polyominoes

We consider the class of L-convex polyominoes, i.e. those polyominoes in which any two cells can be connected with an ''L'' shaped path in one of its four cyclic orientations. The paper proves bijectively that the number f"n of L-convex polyominoes with perimeter 2(n+2) satisfies the linear recurrence relation f"n"+"2=4f"n"+"1-2f"n, by first establishing a recurrence of the same form for the cardinality of the ''2-compositions'' of a natural number n, a simple generalization of the ordinary compositions of n. Then, such 2-compositions are studied and bijectively related to certain words of a regular language over four letters which is in turn bijectively related to L-convex polyominoes. In the last section we give a solution to the open problem of determining the generating function of the area of L-convex polyominoes.

[1]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[2]  D. S. Kothari,et al.  Statistical mechanics and the partitions of numbers , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Peter J. Cameron,et al.  Some sequences of integers , 1989, Discret. Math..

[4]  Danièle Beauquier,et al.  Tiling the plane with one tile , 1990, SCG '90.

[5]  S. Rinaldi,et al.  How the odd terms in the Fibonacci sequence stack up , 2006, The Mathematical Gazette.

[6]  Mireille Bousquet-Mélou,et al.  A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..

[7]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[8]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[9]  Alberto Del Lungo,et al.  ECO:a methodology for the enumeration of combinatorial objects , 1999 .

[10]  S. Golomb Polyominoes: Puzzles, Patterns, Problems, and Packings , 1994 .

[11]  H. Temperley Statistical mechanics and the partition of numbers II. The form of crystal surfaces , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[13]  Robert Vein,et al.  Determinants and their applications in mathematical physics , 1998 .

[14]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[15]  S. W. Golomb,et al.  Checker Boards and Polyominoes , 1954 .

[16]  Antonio Restivo,et al.  Enumeration of L-convex polyominoes by rows and columns , 2005, Theor. Comput. Sci..

[17]  G. Herman,et al.  Discrete tomography : foundations, algorithms, and applications , 1999 .

[18]  Antonio Restivo,et al.  Ordering and Convex Polyominoes , 2004, MCU.

[19]  I. Jensen,et al.  LETTER TO THE EDITOR: Statistics of lattice animals (polyominoes) and polygons , 2000, cond-mat/0007238.

[20]  Antonio Restivo,et al.  A Tomographical Characterization of L-Convex Polyominoes , 2005, DGCI.

[21]  Jorge Nuno Silva,et al.  Mathematical Games , 1959, Nature.

[22]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[23]  Antonio Restivo,et al.  Reconstruction of L-convex Polyominoes , 2003, Electron. Notes Discret. Math..

[24]  G. Rote,et al.  Counting Polyominoes on Twisted Cylinders , 2004 .