Mean-Field Modelling of Precipitation Kinetics with a Fokker-Planck Equation in the Lifshitz-Slyozov-Wagner Space

[1]  S. van der Zwaag,et al.  Numerical simulation of precipitation kinetics in multicomponent alloys , 2022, Journal of Materials Science & Technology.

[2]  Jincheng Wang,et al.  Revisiting the Transient Coarsening Kinetics: A New Framework in the Lifshitz-Slyozov-Wagner Space , 2022, SSRN Electronic Journal.

[3]  P. Prangnell,et al.  CALPHAD-informed phase-field model for two-sublattice phases based on chemical potentials: η-phase precipitation in Al-Zn-Mg-Cu alloys , 2021, Acta Materialia.

[4]  A. Deschamps,et al.  Precipitation kinetics in metallic alloys: Experiments and modeling , 2021, Acta Materialia.

[5]  B. Klusemann,et al.  Modeling precipitation kinetics for multi-phase and multi-component systems using particle size distributions via a moving grid technique , 2021 .

[6]  J. Odqvist,et al.  Langer–Schwartz–Kampmann–Wagner precipitation simulations: assessment of models and materials design application for Cu precipitation in PH stainless steels , 2020, Journal of Materials Science.

[7]  V. Berdichevsky,et al.  Entropy decay during grain growth , 2020, Scientific Reports.

[8]  Yanjun Li,et al.  Modelling the Age-Hardening Precipitation by a Revised Langer and Schwartz Approach with Log-Normal Size Distribution , 2020, Metallurgical and Materials Transactions A.

[9]  C. Hutchinson,et al.  The effect of alloying elements on cementite coarsening during martensite tempering , 2020 .

[10]  F. Haider,et al.  Multi-scale Cluster Dynamics modelling of Guinier–Preston zone formation in binary Al–Cu alloys , 2019, Acta Materialia.

[11]  J. Ågren,et al.  Kinetic theory of nucleation in multicomponent systems: An application of the thermodynamic extremum principle , 2019, Acta Materialia.

[12]  C. Hutchinson,et al.  Cementite coarsening during the tempering of Fe-C-Mn martensite , 2018, Acta Materialia.

[13]  C. Panwisawas,et al.  Mean-field modelling of the intermetallic precipitate phases during heat treatment and additive manufacture of Inconel 718 , 2018, Acta Materialia.

[14]  D. Seidman,et al.  A correlative four-dimensional study of phase-separation at the subnanoscale to nanoscale of a Ni Al alloy , 2018, Acta Materialia.

[15]  D. Larouche A new theory of the solid-state growth of embryos during nucleation: the fundamental role of interfacial mobility , 2018 .

[16]  Feng Liu,et al.  Application of the thermodynamic extremal principle to diffusion-controlled phase-transformations in multi-component substitutional alloys: Modeling and applications , 2016 .

[17]  P. Fratzl,et al.  A new treatment of transient grain growth , 2016 .

[18]  D. Blavette,et al.  Kinetic theory of diffusion-limited nucleation. , 2016, The Journal of chemical physics.

[19]  X. Sauvage,et al.  Modeling of precipitation kinetics in multicomponent systems: Application to model superalloys , 2015 .

[20]  E. Kozeschnik,et al.  Thermo-kinetic modeling of Cu precipitation in α-Fe , 2015 .

[21]  Long-Qing Chen,et al.  Phase-Field Modeling of Nucleation in Solid-State Phase Transformations , 2014 .

[22]  J. Svoboda,et al.  Thermodynamic extremal principles for irreversible processes in materials science , 2014 .

[23]  C. Gandin,et al.  Numerical simulation of precipitation in multicomponent Ni-base alloys , 2013 .

[24]  M. Glicksman,et al.  Experimental, computational and theoretical studies of δ′ phase coarsening in Al–Li alloys , 2012 .

[25]  V. Berdichevsky Thermodynamics of microstructure evolution: Grain growth , 2012 .

[26]  A. Laio,et al.  Systematic improvement of classical nucleation theory. , 2012, Physical review letters.

[27]  W. Poole,et al.  A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys , 2012 .

[28]  Feng Liu,et al.  Application of the maximal entropy production principle to rapid solidification: A sharp interface model , 2012 .

[29]  E. Kozeschnik Thermodynamic prediction of the equilibrium chemical composition of critical nuclei: Bcc Cu precipitation in α-Fe , 2008 .

[30]  Michel Perez,et al.  Implementation of classical nucleation and growth theories for precipitation , 2008 .

[31]  J. Ågren,et al.  Analytical treatment of diffusion during precipitate growth in multicomponent systems , 2008 .

[32]  Victor L. Berdichevsky,et al.  Entropy of microstructure , 2008 .

[33]  E. Kozeschnik,et al.  Shape factors in modeling of precipitation , 2006 .

[34]  N. V. Alekseechkin Multivariable kinetic theory of the first order phase transitions. , 2006, The Journal of chemical physics.

[35]  P. Maugis,et al.  Kinetics of vanadium carbonitride precipitation in steel: A computer model , 2005 .

[36]  D. Frenkel,et al.  Rate of homogeneous crystal nucleation in molten NaCl. , 2005, The Journal of chemical physics.

[37]  P. Fratzl,et al.  Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I. – Theory , 2004 .

[38]  M. Glicksman,et al.  Modeling and simulation for phase coarsening: a comparison with experiment. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  C. Sigli,et al.  Nucleation of Al 3 Zr and Al 3 Sc in aluminum alloys: From kinetic Monte Carlo simulations to classical theory , 2004, cond-mat/0402137.

[40]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[41]  S. P. Marsh,et al.  Diffusional interactions among crystallites , 2001 .

[42]  Joseph D. Robson,et al.  Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys , 2001 .

[43]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[44]  Øystein Grong,et al.  Modelling of non-isothermal transformations in alloys containing a particle distribution , 2000 .

[45]  G. Wilemski Binary nucleation kinetics. IV. Directional properties and cluster concentrations at the saddle point , 1999 .

[46]  P. Voorhees,et al.  The dynamics of transient Ostwald ripening , 1993 .

[47]  Y. Zeldovich,et al.  10. On the Theory of New Phase Formation. Cavitation , 1992 .

[48]  I. Turek,et al.  On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure , 1991 .

[49]  I. Turek,et al.  Unified thermodynamic treatment of cavity nucleation and growth in high temperature creep , 1990 .

[50]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[51]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[52]  H. Wakeshima Time Lag in the Self‐Nucleation , 1954 .

[53]  Howard Reiss,et al.  The Kinetics of Phase Transitions in Binary Systems , 1950 .

[54]  F. Liu,et al.  Multi-scale modeling of the complex microstructural evolution in structural phase transformations , 2019, Acta Materialia.

[55]  Q. Du,et al.  Modeling over-ageing in Al-Mg-Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner Numerical model , 2017 .

[56]  Q. Du,et al.  Precipitation of Non-Spherical Particles in Aluminum Alloys Part I: Generalization of the Kampmann–Wagner Numerical Model , 2015, Metallurgical and Materials Transactions A.

[57]  J. Feder,et al.  Homogeneous nucleation and growth of droplets in vapours , 1966 .

[58]  David Turnbull,et al.  Rate of Nucleation in Condensed Systems , 1949 .