Global sensitivity analysis on numerical solver parameters of Particle-In-Cell models in particle accelerator systems

Abstract Every computer model depends on numerical input parameters that are chosen according to mostly conservative but rigorous numerical or empirical estimates. These parameters could for example be the step size for time integrators, a seed for pseudo-random number generators, a threshold or the number of grid points to discretize a computational domain. In case a numerical model is enhanced with new algorithms and modelling techniques the numerical influence on the quantities of interest, the running time as well as the accuracy is often initially unknown. Usually parameters are chosen on a trial-and-error basis neglecting the computational cost versus accuracy aspects. As a consequence the cost per simulation might be unnecessarily high which wastes computing resources. Hence, it is essential to identify the most critical numerical parameters and to analyse systematically their effect on the result in order to minimize the time-to-solution without losing significantly on accuracy. Relevant parameters are identified by global sensitivity studies where Sobol’ indices are common measures. These sensitivities are obtained by surrogate models based on polynomial chaos expansion. In this paper, we first introduce the general methods for uncertainty quantification. We then demonstrate their use on numerical solver parameters to reduce the computational costs and discuss further model improvements based on the sensitivity analysis. The sensitivities are evaluated for neighbouring bunch simulations of the existing PSI Injector II and PSI Ring as well as the proposed DAE δ ALUS Injector cyclotron and simulations of the rf electron gun of the Argonne Wakefield Accelerator.

[1]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[2]  K. Crandall,et al.  Beam Halo in Proton Linac Beams , 2000 .

[3]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[4]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[5]  W. Gai,et al.  Electron acceleration through two successive electron beam driven wakefield acceleration stages , 2018 .

[6]  P. Pani,et al.  GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .

[7]  Wanming Liu,et al.  Research Program and Recent Results at the Argonne Wakefield Accelerator Facility (AWA) , 2017 .

[8]  Gilles Louppe,et al.  Independent consultant , 2013 .

[9]  Vinzenz Gregor Eck,et al.  A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications , 2016, International journal for numerical methods in biomedical engineering.

[10]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[11]  Hans Petter Langtangen,et al.  Chaospy: An open source tool for designing methods of uncertainty quantification , 2015, J. Comput. Sci..

[12]  M J Welch,et al.  Efficient production of high specific activity 64Cu using a biomedical cyclotron. , 1997, Nuclear medicine and biology.

[13]  R. Barlow,et al.  Medical isotope production with the IsoDAR cyclotron , 2019, Nature Reviews Physics.

[14]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[15]  I. Sobol,et al.  Sensitivity Measures, ANOVA-like Techniques and the Use of Bootstrap , 1997 .

[16]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[17]  Andreas Adelmann,et al.  On Nonintrusive Uncertainty Quantification and Surrogate Model Construction in Particle Accelerator Modeling , 2019, SIAM/ASA J. Uncertain. Quantification.

[18]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[19]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[20]  S. Marelli,et al.  An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis , 2017, Structural Safety.

[21]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[22]  N. Wiener The Homogeneous Chaos , 1938 .

[23]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[24]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[25]  Mário A. T. Figueiredo Adaptive Sparseness Using Jeffreys Prior , 2001, NIPS.

[26]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[27]  Matthias Frey,et al.  Matching of turn pattern measurements for cyclotrons using multiobjective optimization , 2019, Physical Review Accelerators and Beams.

[28]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[29]  Eric Esarey,et al.  Space charge modeling of dense electron beams with large energy spreads , 2006 .

[30]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[31]  W. Fischer SINQ — The spallation neutron source, a new research facility at PSI , 1997 .

[32]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[33]  Michael S. Eldred,et al.  DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .

[34]  José Salgado,et al.  Nuclear Instruments and Methods , 2003 .

[35]  A. Adelmann,et al.  Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation, and application , 2010, 1003.0326.

[36]  A. Adelmann,et al.  Modelling challenges of the high power cyclotrons for the DAEδALUS project , 2013 .

[37]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[38]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[39]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[40]  H. J. Mclaughlin,et al.  Learn , 2002 .

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[43]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[44]  A. Adelmann,et al.  OPAL a Versatile Tool for Charged Particle Accelerator Simulations , 2019, 1905.06654.

[45]  Y. X. Wang,et al.  Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms , 2018 .

[46]  C. K. Allen,et al.  Beam halo definitions based upon moments of the particle distribution , 2002 .

[47]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[48]  W. Gai,et al.  Short-pulse dielectric two-beam acceleration , 2012, Journal of Plasma Physics.

[49]  Houman Owhadi,et al.  Handbook of Uncertainty Quantification , 2017 .

[50]  池谷 壽夫,et al.  Vulnerability: reflections on a new ethical foundation for law and politics , 2013 .

[51]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[52]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[53]  A. Adelmann,et al.  arXiv : Intensity limits of the PSI Injector II cyclotron , 2017, 1707.07970.

[54]  Wei Chu,et al.  A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model , 2014, Environ. Model. Softw..

[55]  Khachik Sargsyan,et al.  Surrogate Models for Uncertainty Propagation and Sensitivity Analysis , 2015 .

[56]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[57]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[58]  A. Stolz,et al.  Commissioning the A1900 projectile fragment separator , 2003 .

[59]  Polynomial chaos expansions for dependent random variables , 2019, Computer Methods in Applied Mechanics and Engineering.

[60]  Jose R. Alonso,et al.  High current H2+ cyclotrons for neutrino physics: The IsoDAR and DAEδALUS projects , 2013 .

[61]  ScienceDirect Reliability engineering & system safety , 1988 .

[62]  Alessandra Bolsi,et al.  Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: the Paul Scherrer Institut experience. , 2005, International journal of radiation oncology, biology, physics.

[63]  Michael Elad,et al.  Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .

[64]  Stefano Marelli,et al.  UQLab: a framework for uncertainty quantification in MATLAB , 2014 .