Global sensitivity analysis on numerical solver parameters of Particle-In-Cell models in particle accelerator systems
暂无分享,去创建一个
[1] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[2] K. Crandall,et al. Beam Halo in Proton Linac Beams , 2000 .
[3] Habib N. Najm,et al. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..
[4] K. Perez. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .
[5] W. Gai,et al. Electron acceleration through two successive electron beam driven wakefield acceleration stages , 2018 .
[6] P. Pani,et al. GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .
[7] Wanming Liu,et al. Research Program and Recent Results at the Argonne Wakefield Accelerator Facility (AWA) , 2017 .
[8] Gilles Louppe,et al. Independent consultant , 2013 .
[9] Vinzenz Gregor Eck,et al. A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications , 2016, International journal for numerical methods in biomedical engineering.
[10] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[11] Hans Petter Langtangen,et al. Chaospy: An open source tool for designing methods of uncertainty quantification , 2015, J. Comput. Sci..
[12] M J Welch,et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. , 1997, Nuclear medicine and biology.
[13] R. Barlow,et al. Medical isotope production with the IsoDAR cyclotron , 2019, Nature Reviews Physics.
[14] Lawrence Carin,et al. Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.
[15] I. Sobol,et al. Sensitivity Measures, ANOVA-like Techniques and the Use of Bootstrap , 1997 .
[16] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[17] Andreas Adelmann,et al. On Nonintrusive Uncertainty Quantification and Surrogate Model Construction in Particle Accelerator Modeling , 2019, SIAM/ASA J. Uncertain. Quantification.
[18] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[19] O P Le Maître,et al. Spectral stochastic uncertainty quantification in chemical systems , 2004 .
[20] S. Marelli,et al. An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis , 2017, Structural Safety.
[21] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[22] N. Wiener. The Homogeneous Chaos , 1938 .
[23] Max D. Morris,et al. Factorial sampling plans for preliminary computational experiments , 1991 .
[24] B. Henderson-Sellers,et al. Mathematics and Computers in Simulation , 1995 .
[25] Mário A. T. Figueiredo. Adaptive Sparseness Using Jeffreys Prior , 2001, NIPS.
[26] Michael S. Eldred,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .
[27] Matthias Frey,et al. Matching of turn pattern measurements for cyclotrons using multiobjective optimization , 2019, Physical Review Accelerators and Beams.
[28] Peter E. Thornton,et al. DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .
[29] Eric Esarey,et al. Space charge modeling of dense electron beams with large energy spreads , 2006 .
[30] Aggelos K. Katsaggelos,et al. Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.
[31] W. Fischer. SINQ — The spallation neutron source, a new research facility at PSI , 1997 .
[32] R. Ghanem,et al. Stochastic Finite Element Expansion for Random Media , 1989 .
[33] Michael S. Eldred,et al. DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .
[34] José Salgado,et al. Nuclear Instruments and Methods , 2003 .
[35] A. Adelmann,et al. Beam dynamics in high intensity cyclotrons including neighboring bunch effects: Model, implementation, and application , 2010, 1003.0326.
[36] A. Adelmann,et al. Modelling challenges of the high power cyclotrons for the DAEδALUS project , 2013 .
[37] Stéphane Mallat,et al. Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..
[38] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[39] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[40] H. J. Mclaughlin,et al. Learn , 2002 .
[41] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[42] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[43] A. Saltelli,et al. Importance measures in global sensitivity analysis of nonlinear models , 1996 .
[44] A. Adelmann,et al. OPAL a Versatile Tool for Charged Particle Accelerator Simulations , 2019, 1905.06654.
[45] Y. X. Wang,et al. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms , 2018 .
[46] C. K. Allen,et al. Beam halo definitions based upon moments of the particle distribution , 2002 .
[47] Ericka Stricklin-Parker,et al. Ann , 2005 .
[48] W. Gai,et al. Short-pulse dielectric two-beam acceleration , 2012, Journal of Plasma Physics.
[49] Houman Owhadi,et al. Handbook of Uncertainty Quantification , 2017 .
[50] 池谷 壽夫,et al. Vulnerability: reflections on a new ethical foundation for law and politics , 2013 .
[51] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[52] Y. C. Pati,et al. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.
[53] A. Adelmann,et al. arXiv : Intensity limits of the PSI Injector II cyclotron , 2017, 1707.07970.
[54] Wei Chu,et al. A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model , 2014, Environ. Model. Softw..
[55] Khachik Sargsyan,et al. Surrogate Models for Uncertainty Propagation and Sensitivity Analysis , 2015 .
[56] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[57] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[58] A. Stolz,et al. Commissioning the A1900 projectile fragment separator , 2003 .
[59] Polynomial chaos expansions for dependent random variables , 2019, Computer Methods in Applied Mechanics and Engineering.
[60] Jose R. Alonso,et al. High current H2+ cyclotrons for neutrino physics: The IsoDAR and DAEδALUS projects , 2013 .
[61] ScienceDirect. Reliability engineering & system safety , 1988 .
[62] Alessandra Bolsi,et al. Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: the Paul Scherrer Institut experience. , 2005, International journal of radiation oncology, biology, physics.
[63] Michael Elad,et al. Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit , 2008 .
[64] Stefano Marelli,et al. UQLab: a framework for uncertainty quantification in MATLAB , 2014 .