Skalak's extended theory of water hammer

Half a century ago Richard Skalak [see T.C. Skalak, A dedication in memoriam of Dr. Richard Skalak, Annual Review of Biomedical Engineering 1 (1999) 1-18] published a paper with the title "An extension of the theory of water hammer" [R. Skalak, An Extension of the Theory of Water Hammer, PhD Thesis, Faculty of Pure Science, Columbia University, New York, USA, 1954; R. Skalak, An extension of the theory of water hammer, Water Power 7/8 (1955/1956) 458-462/ 17-22; R. Skalak, An extension of the theory of water hammer, Transactions of the ASME 78 (1956) 105-116], which has been the basis of much subsequent work on hydraulic transients with fluid-structure interaction (FSI). The paper considers the propagation of pressure waves in liquid-filled pipes and the coupled radial/axial response of the pipe walls. In a tribute to Skalak's work, his paper is revisited and some of his less-known results are used to assess the dispersion of pressure waves in long-distance pipelines. Skalak's theory predicts that the spreading of wave fronts due to FSI is small, at most of the order of 10 pipe diameters.

[1]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 2: Case studies , 2008 .

[2]  A. Tijsseling,et al.  Fluid transients and fluid-structure interaction in flexible liquid-filled piping , 2001 .

[3]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools , 2008 .

[4]  Sh. Suzuki,et al.  Dynamic behaviour of thin cylindrical shells subjected to high-speed travelling inner pressures , 1972 .

[5]  A. R. D. Thorley Pressure Transients in Hydraulic Pipelines , 1969 .

[6]  Angus R. Simpson,et al.  Water hammer with column separation: A historical review , 2006 .

[7]  Richard Skalak,et al.  An Extension of the Theory of Water Hammer , 1955, Journal of Fluids Engineering.

[8]  Angus R. Simpson,et al.  Wave front dispersion due to fluid-structure interaction in long liquid-filled pipelines , 2006 .

[9]  J. W. Phillips,et al.  Pulse Propagation in Fluid-Filled Tubes , 1975 .

[10]  Tadaharu Adachi,et al.  Impulsive Responses of a Circular Cylindrical Shell Subjected to Waterhammer Waves , 1991 .

[11]  E. Benjamin Wylie,et al.  Fluid Transients in Systems , 1993 .

[12]  G. E. Chao,et al.  Dispersive surface acoustic waves in poroelastic waves , 2005 .

[13]  Werner Goldsmith,et al.  Longitudinal waves in liquid-filled tubes—I: Theory , 1979 .

[14]  C. J. Wisse On frequency dependence of acoustic waves in porous cylinders , 1999 .

[15]  Lixiang Zhang,et al.  Analytical Solution for Fluid-Structure Interaction in Liquid-Filled Pipes Subjected to Impact-Induced Water Hammer , 2003 .

[16]  D. Williams Waterhammer in Non-Rigid Pipes: Precursor Waves and Mechanical Damping , 1977 .

[17]  A. Tijsseling Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration , 2003 .

[18]  AS Arris Tijsseling,et al.  Travelling discontinuities in waterhammer theory : attenuation due to friction , 2000 .

[19]  T C Skalak,et al.  A dedication in memoriam of Dr. Richard Skalak. , 1999, Annual review of biomedical engineering.

[20]  Frantisek Vales,et al.  Wave Propagation in a Thick Cylindrical Bar Due to Longitudinal Impact , 1996 .

[21]  G. Zeggwagh,et al.  Modélisation du phénomène de coup de bélier avec prise en compte du comportement réel de la conduite , 1998 .

[22]  A. Tijsseling Fluid-Structure Interaction in Case of Waterhammer with Cavitation , 1993 .

[23]  Cedo Maksimovic,et al.  The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—model development, calibration and verification , 2005 .

[24]  E C H Becker,et al.  Generation and use of mechanical step transients in dynamic measurement , 1964 .

[25]  Werner Goldsmith,et al.  Longitudinal waves in liquid-filled tubes—II: Experiments , 1979 .

[26]  D. A. Sumarsono,et al.  Onde de pression dans un liquid confiné par un tube souple , 1992 .