Spectral Theory for Perturbed Systems

This paper presents an overview of topological, smooth, and control techniques for dynamical systems and their interrelations for the study of perturbed systems. We concentrate on spectral analysis via linearization of systems. Emphasis is placed on parameter dependent perturbed systems and on a comparison of the Markovian and the dynamical structure of systems with Markov diffusion perturbation process. A number of applications is provided (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Wolf-Jürgen Beyn,et al.  A hybrid method for computing Lyapunov exponents , 2009, Numerische Mathematik.

[2]  Fritz Colonius,et al.  Near Invariance for Markov Diffusion Systems , 2008, SIAM J. Appl. Dyn. Syst..

[3]  F. Colonius,et al.  Bifurcation phenomena in control flows , 2007 .

[4]  Matteo Turilli,et al.  Dynamics of Control , 2007, First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE '07).

[5]  Luca Dieci,et al.  On the error in computing Lyapunov exponents by QR Methods , 2005, Numerische Mathematik.

[6]  L. Arnold Random Dynamical Systems , 2003 .

[7]  S. Grünvogel Lyapunov exponents and control sets near singular points , 2003 .

[8]  L. Grüne Asymptotic Controllability and Exponential Stabilization of Nonlinear Control Systems at Singular Points , 1998 .

[9]  Hualin Wang Feedback Stabilization of Bilinear Control Systems , 1998 .

[10]  Hans Crauel,et al.  Additive Noise Destroys a Pitchfork Bifurcation , 1998 .

[11]  Lars Grüne,et al.  Numerical Stabilization of Bilinear Control Systems , 1996 .

[12]  Thomas Wanner,et al.  Integral Manifolds for Carathéodory Type Differential Equations in Banach Spaces , 1996 .

[13]  Peter H. Baxendale,et al.  A stochastic Hopf bifurcation , 1994 .

[14]  J. A. Walker,et al.  The general problem of the stability of motion , 1994 .

[15]  W. Kliemann,et al.  Some aspects of control systems as dynamical systems , 1993 .

[16]  Hans Crauel,et al.  Markov measures for random dynamical systems , 1991 .

[17]  Denis Talay,et al.  Approximation of upper Lyapunov exponents of bilinear stochastic differential systems , 1991 .

[18]  Y. Latushkin,et al.  Weighted translation operators and linear extensions of dynamical systems , 1991 .

[19]  D. Salamon,et al.  Flows on vector bundles and hyperbolic sets , 1988 .

[20]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[21]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[22]  I. I. Gikhman,et al.  The Theory of Stochastic Processes III , 1979 .

[23]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[24]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[25]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[26]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[27]  Héctor J. Sussmann,et al.  Some properties of vector field systems that are not altered by small perturbations , 1976 .

[28]  J. F. Selgrade Isolated invariant sets for flows on vector bundles , 1975 .

[29]  Hiroshi Kunita,et al.  A classification of the second order degenerate elliptic operators and its probabilistic characterization , 1974 .

[30]  W. Beyn,et al.  A hybrid method for calculating Lyapunov exponents , 2007 .

[31]  W. Kliemann,et al.  Bifurcations of Control Systems: A View from Control Flows , 2003 .

[32]  P. Baxendale Stability Along Trajectories at a Stochastic Bifurcation Point , 1999 .

[33]  Gabriele Bleckert,et al.  The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation , 1999 .

[34]  Russell Johnson Some Questions in Random Dynamical Systems Involving Real Noise Processes , 1999 .

[35]  N. Namachchivaya,et al.  P-Bifurcations in the Noisy Duffing-van der Pol Equation , 1999 .

[36]  Hans Crauel,et al.  Bifurcations of One-Dimensional Stochastic Differential Equations , 1999 .

[37]  Wolfgang Kliemann,et al.  Topological, Smooth, and Control Techniques for Perturbed Systems , 1999 .

[38]  P. Imkeller Bifurcation of One{dimensional Stochastic Diierential Equation , 1999 .

[39]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[40]  Wolfgang Kliemann,et al.  The Morse spectrum of linear flows on vector bundles , 1996 .

[41]  Denis Talay,et al.  Simulation of stochastic differential systems , 1995 .

[42]  L. Arnold,et al.  TOWARD AN UNDERSTANDING OF STOCHASTIC HOPF BIFURCATION: A CASE STUDY , 1994 .

[43]  Denis Talay,et al.  Simulation and numerical analysis of stochastic differential systems : a review , 1990 .

[44]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[45]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[46]  Wolfgang Kliemann,et al.  Large deviations of linear stochastic differential equations , 1987 .

[47]  L. Arnold,et al.  Lyapunov exponents of linear stochastic systems , 1986 .

[48]  Wolfgang Kliemann,et al.  Qualitative Theory of Stochastic Systems , 1983 .

[49]  M. Karoubi K-Theory: An Introduction , 1978 .

[50]  R. Robinson,et al.  Stability theorems and hyperbolicity in dynamical systems , 1977 .

[51]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[52]  S. Varadhan,et al.  On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .