Nonlinear characterization of GeSbS chalcogenide glass waveguides

GeSbS ridge waveguides have recently been demonstrated as a promising mid – infrared platform for integrated waveguide – based chemical sensing and photodetection. To date, their nonlinear optical properties remain relatively unexplored. In this paper, we characterize the nonlinear optical properties of GeSbS glasses, and show negligible nonlinear losses at 1.55 μm. Using self – phase modulation experiments, we characterize a waveguide nonlinear parameter of 7 W−1/m and nonlinear refractive index of 3.71 × 10−18 m2/W. GeSbS waveguides are used to generate supercontinuum from 1280 nm to 2120 nm at the −30 dB level. The spectrum expands along the red shifted side of the spectrum faster than on the blue shifted side, facilitated by cascaded stimulated Raman scattering arising from the large Raman gain of chalcogenides. Fourier transform infrared spectroscopic measurements show that these glasses are optically transparent up to 25 μm, making them useful for short – wave to long – wave infrared applications in both linear and nonlinear optics.

[1]  Sophie LaRochelle,et al.  First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses , 1999 .

[2]  Brian S. Wherrett,et al.  Near-infrared optical nonlinearities in amorphous chalcogenides , 1994 .

[3]  Itaru Yokohama,et al.  Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre , 1996 .

[4]  Michel Couzi,et al.  Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S , 2006 .

[5]  A Humeau,et al.  Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se. , 2006, Optics letters.

[6]  Masaki Asobe,et al.  Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching , 1997 .

[7]  H. Ticha,et al.  Far Infrared Spectra and Bonding Arrangement in Some Ge–Sb–S Glasses , 2000 .

[8]  M Cronin-Golomb,et al.  Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. , 2008, Optics express.

[9]  Yeshaiahu Fainman,et al.  Monolithic nonlinear pulse compressor on a silicon chip. , 2010, Nature communications.

[10]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[11]  Keiji Tanaka,et al.  Nonlinear optics in glasses : How can we analyze? , 2007 .

[12]  F. Gan Structure, properties and applications of chalcohalide glasses : a review , 1992 .

[13]  M. Couzi,et al.  Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70- xSex , 2006 .

[14]  Nathan Carlie,et al.  Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses , 2007 .

[15]  Keijiro Suzuki,et al.  Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides. , 2010, Optics express.

[16]  G. Millot,et al.  Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber. , 2008, Optics express.

[17]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[18]  D. Moss,et al.  Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. , 2005, Optics express.

[19]  Pao Tai Lin,et al.  On-chip mid-infrared gas detection using chalcogenide glass waveguide , 2016 .

[20]  Kathleen Richardson,et al.  Non-linear optical properties of chalcogenide glasses in the system As–S–Se , 1999 .

[21]  Hagan,et al.  Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. , 1990, Physical review letters.

[22]  Yi Yu,et al.  A broadband, quasi‐continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide , 2014 .

[23]  Yi Yu,et al.  Experimental demonstration of linearly polarized 2-10  μm supercontinuum generation in a chalcogenide rib waveguide. , 2016, Optics letters.

[24]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[25]  Kevin K. Tsia,et al.  Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering , 2014 .

[26]  Craig B. Arnold,et al.  Spin-coating of Ge23Sb7S70 chalcogenide glass thin films , 2009 .

[27]  F. Wise,et al.  Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching , 2002, IEEE Photonics Technology Letters.

[28]  C. Arnold,et al.  Spin-coating of Ge 23Sb 7S 70 chalcogenide glass thin films , 2009 .

[29]  J. Fatome,et al.  Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers , 2009, Journal of Lightwave Technology.

[30]  Qian Wang,et al.  Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides , 2015 .

[31]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber. , 2013, Optics express.

[32]  Alireza Marandi,et al.  Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm. , 2012, Optics express.

[33]  Anant Agarwal,et al.  Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses , 2009 .

[34]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[35]  Jasbinder S. Sanghera,et al.  Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers , 2004 .

[36]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[37]  Barry Luther-Davies,et al.  Integrated all-optical pulse regenerator in chalcogenide waveguides. , 2005, Optics letters.

[38]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[39]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[40]  Kazuhiro Ikeda,et al.  Group velocity dispersion and self phase modulation in silicon nitride waveguides , 2010 .

[41]  B. Luther-Davies,et al.  Large phase shifts in As2S3 waveguides for all-optical processing devices. , 2005, Optics letters.

[42]  M.N. Islam,et al.  Third order cascaded Raman wavelength shifting in chalcogenide fibers , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[43]  Jasbinder S. Sanghera,et al.  Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. , 2010, Optics express.

[44]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[45]  K. Matsuishi,et al.  Low frequency Raman scattering spectra of (GeS2)1−χ(Sb2S3)χ amorphous semiconductors , 1997 .

[46]  D-P Wei,et al.  Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber. , 2005, Optics express.