Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method

[1]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[2]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[3]  N. Jalili,et al.  Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings , 2008 .

[4]  Tony Murmu,et al.  Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory , 2009 .

[5]  Bin Zhu,et al.  Linear and nonlinear vibration of non-uniform beams on two-parameter foundations using p-elements , 2009 .

[6]  Ramin Vatankhah,et al.  VIBRATIONAL ANALYSIS OF CARBON NANOTUBES AND GRAPHENE SHEETS USING MOLECULAR STRUCTURAL MECHANICS APPROACH , 2009 .

[7]  M. Mohammadimehr,et al.  Transverse vibration of short carbon nanotubes using cylindrical shell and beam models , 2010 .

[8]  K. B. Mustapha,et al.  The thermo-mechanical vibration of a single-walled carbon nanotube studied using the Bubnov–Galerkin method , 2010 .

[9]  Jie Yang,et al.  Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory , 2010 .

[10]  M. Ghayesh,et al.  Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams , 2010 .

[11]  A. G. Arani,et al.  The thermal effect on buckling analysis of a DWCNT embedded on the Pasternak foundation , 2011 .

[12]  Reza Ansari,et al.  A sixth-order compact finite difference method for vibrational analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory , 2011, Math. Comput. Model..