Hindmarsh–Rose model: Close and far to the singular limit
暂无分享,去创建一个
[1] Enno de Lange,et al. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. , 2008, Chaos.
[2] J. Hindmarsh,et al. A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[3] Andrey Shilnikov,et al. Methods of the Qualitative Theory for the Hindmarsh-rose Model: a Case Study - a Tutorial , 2008, Int. J. Bifurc. Chaos.
[4] David Terman,et al. Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .
[5] Andrey Shilnikov,et al. Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model , 2011, Journal of mathematical neuroscience.
[6] Alessandro Torcini,et al. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. , 2007, Chaos.
[7] J. Guckenheimer,et al. HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO EQUATION: THE SINGULAR-LIMIT , 2009, 1201.5901.
[8] John Guckenheimer,et al. The singular limit of a Hopf bifurcation , 2012 .
[9] J. M. Gonzalez-Miranda. Complex bifurcation Structures in the Hindmarsh-rose Neuron Model , 2007, Int. J. Bifurc. Chaos.
[10] R. Genesio,et al. On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron. , 2009, Chaos.
[11] Andrey Shilnikov,et al. Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons. , 2014, Chaos.
[12] Edgar Knobloch,et al. When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..
[13] Mathieu Desroches,et al. Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. , 2013, Chaos.
[14] Alan R. Champneys,et al. Codimension-Two Homoclinic Bifurcations Underlying Spike Adding in the Hindmarsh-Rose Burster , 2011, SIAM J. Appl. Dyn. Syst..
[15] Roberto Barrio,et al. Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .
[16] A. Hodgkin,et al. A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.
[17] J. M. Gonzalez-Miranda,et al. Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. , 2003, Chaos.
[18] John Guckenheimer,et al. Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..