Drift-compensated data acquisition performed at room temperature with frequency modulation atomic force microscopy

The authors have performed distortionless atom imaging and force mapping experiments, under a large thermal drift condition at room temperature (RT), using frequency modulation atomic force microscopy (FM-AFM) that had been done previously only at low temperature. In the authors’ experimental scheme, three-dimensional position feedback with atom tracking detects the thermal drift velocity that is constant for a period of time at RT. The detected velocity is then used as the model for implementing the feedforward in order to compensate for the thermal drift. This technique can be expected to be used for precise positioning of the tip-sample in atom manipulation experiments using the FM-AFM at RT.

[1]  H. Hölscher,et al.  Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy , 2002 .

[2]  O. Custance,et al.  Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy , 2005 .

[3]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[4]  John E. Sader,et al.  Accurate formulas for interaction force and energy in frequency modulation force spectroscopy , 2004 .

[5]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[6]  John T. Woodward,et al.  Removing drift from scanning probe microscope images of periodic samples , 1998 .

[7]  C. Quate,et al.  Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. , 2005, Physical Review Letters.

[8]  P. Jelínek,et al.  Single atomic contact adhesion and dissipation in dynamic force microscopy. , 2006, Physical review letters.

[9]  H. Güntherodt,et al.  Quantitative Measurement of Short-Range Chemical Bonding Forces , 2001, Science.

[10]  Masayuki Abe,et al.  Atom inlays performed at room temperature using atomic force microscopy , 2005, Nature materials.

[11]  Rolf Möller,et al.  ``Tracking'' tunneling microscopy , 1988 .

[12]  H. Fuchs,et al.  Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. , 2006, Physical review letters.

[13]  H. Hölscher,et al.  Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes , 2000 .

[14]  Masayuki Abe,et al.  Room-temperature reproducible spatial force spectroscopy using atom-tracking technique , 2005 .

[15]  Masayuki Abe,et al.  Atom tracking for reproducible force spectroscopy at room temperature with non-contact atomic force microscopy , 2005 .

[16]  Yoichi Uehara,et al.  Servomechanism for locking scanning tunneling microscope tip over surface nanostructures , 2000 .

[17]  V. Yurov,et al.  Scanning tunneling microscope calibration and reconstruction of real image: Drift and slope elimination , 1994 .

[18]  P. Jelínek,et al.  Real topography, atomic relaxations, and short-range chemical interactions in atomic force microscopy: The case of the α − Sn ∕ Si ( 111 ) − ( 3 × 3 ) R 30 ° surface , 2006 .