Chapter 6 Microbial Processes in Oil Fields

[1]  Eoin L Brodie,et al.  Application of a High-Density Oligonucleotide Microarray Approach To Study Bacterial Population Dynamics during Uranium Reduction and Reoxidation , 2006, Applied and Environmental Microbiology.

[2]  D. Jones,et al.  Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs , 2004, Nature.

[3]  M. Magot Indigenous Microbial Communities in Oil Fields , 2005 .

[4]  S. J. Nelson,et al.  STRIPPER WELL PRODUCTION INCREASED WITH MEOR TREATMENT , 1991 .

[5]  Russell H. Vreeland,et al.  Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate , 2002, Extremophiles.

[6]  B. Patel,et al.  Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. , 1997, International journal of systematic bacteriology.

[7]  F. Widdel,et al.  Anaerobic Oxidation of o -Xylene, m -Xylene, and Homologous Alkylbenzenes by New Types of Sulfate-Reducing Bacteria , 1999, Applied and Environmental Microbiology.

[8]  Olga Zhaxybayeva,et al.  Evidence for Existence of “Mesotogas,” Members of the Order Thermotogales Adapted to Low-Temperature Environments , 2006, Applied and Environmental Microbiology.

[9]  S. Han,et al.  Re-identification of the halotolerant, biosurfactant-producing Bacillus licheniformis strain JF-2 as Bacillus mojavensis strain JF-2. , 2006, Systematic and applied microbiology.

[10]  Ramkrishna Sen,et al.  Towards commercial production of microbial surfactants. , 2006, Trends in biotechnology.

[11]  G. Rosenthal,et al.  Development and application of a new biotechnology of the molasses in-situ method; detailed evaluation for selected wells in the Romashkino carbonate reservoir , 1995 .

[12]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[13]  C. Vetriani,et al.  Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. , 2004, International journal of systematic and evolutionary microbiology.

[14]  J. J. Taber,et al.  Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water , 1969 .

[15]  Owen P. Ward,et al.  Recent Advances in Petroleum Microbiology , 2003, Microbiology and Molecular Biology Reviews.

[16]  I. Vance,et al.  Reservoir Souring: Mechanisms and Prevention , 2005 .

[17]  G. T. Sperl,et al.  A New Microbial Technology for Enhanced Oil Recovery and Sulfide Prevention and Reduction , 1994 .

[18]  Ibrahim M. Banat,et al.  Characterization of biosurfactants and their use in pollution removal – State of the Art. (Review) , 1995 .

[19]  P. Sharma,et al.  Effect of Grain Size on Bacterial Penetration, Reproduction, and Metabolic Activity in Porous Glass Bead Chambers , 1994, Applied and environmental microbiology.

[20]  R. Huber,et al.  Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs , 1993, Nature.

[21]  R. Tanner,et al.  The Potential for MEOR from Carbonate Reservoirs: Literature Review and Recent Research , 1993 .

[22]  Z. Zhou,et al.  Systematic Extensive Laboratory Studies of Microbial EOR Mechanisms and Microbial EOR Application Results in Changqing Oilfield , 1999 .

[23]  M. Nemati,et al.  Containment of Biogenic Sulfide Production in Continuous Up‐Flow Packed‐Bed Bioreactors with Nitrate or Nitrite , 2003, Biotechnology progress.

[24]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[25]  M. McInerney,et al.  Selectivity and depth of microbial plugging in Berea sandstone cores , 1986, Journal of Industrial Microbiology.

[26]  D. Swift,et al.  Spatial variability of sulfate reduction in a shallow aquifer. , 2007, Environmental microbiology.

[27]  D. Westlake,et al.  Reverse Sample Genome Probing, a New Technique for Identification of Bacteria in Environmental Samples by DNA Hybridization, and Its Application to the Identification of Sulfate-Reducing Bacteria in Oil Field Samples , 1991, Applied and environmental microbiology.

[28]  P. Sharma,et al.  In situ growth and activity and modes of penetration of Escherichia coli in unconsolidated porous materials , 1993, Applied and environmental microbiology.

[29]  D. R. Schneider,et al.  Microbial Enhanced Oil Recovery: Diverse Successful Applications of Biotechnology in the Oil Field , 2001 .

[30]  I. Banat,et al.  Potential commercial applications of microbial surfactants , 2000, Applied Microbiology and Biotechnology.

[31]  N.Ravi,et al.  Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery , 2003 .

[32]  R. S. Bryant,et al.  Review of microbial technology for improving oil recovery , 1989 .

[33]  T. Nazina,et al.  Microbial oil transformation processes accompanied by methane and hydrogen‐sulfide formation , 1985 .

[34]  Changkai Zhang,et al.  Application of microbial enhanced oil recovery technique to Daqing Oilfield , 2002 .

[35]  A. Mirzabekov,et al.  Radioisotopic, Culture-Based, and Oligonucleotide Microchip Analyses of Thermophilic Microbial Communities in a Continental High-Temperature Petroleum Reservoir , 2003, Applied and Environmental Microbiology.

[36]  B. Ollivier,et al.  Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. , 2003, Anaerobe.

[37]  Jochen A. Müller,et al.  Initiation of Anaerobic Degradation of p-Cresol by Formation of 4-Hydroxybenzylsuccinate inDesulfobacterium cetonicum , 2001, Journal of bacteriology.

[38]  J. Suflita,et al.  The influence of nitrate on microbial processes in oil industry production waters , 2001, Journal of Industrial Microbiology and Biotechnology.

[39]  F. F. Craig The reservoir engineering aspects of waterflooding , 1971 .

[40]  J. Foght,et al.  Identification of Distinct Communities of Sulfate-Reducing Bacteria in Oil Fields by Reverse Sample Genome Probing , 1992, Applied and environmental microbiology.

[41]  Peihui Han,et al.  Microbial EOR Laboratory Studies on the Microorganisms Using Petroleum Hydrocarbon as a Sole Carbon Source , 2001 .

[42]  P. D. Moffitt,et al.  Sulfide Removal in Reservoir Brine by Indigenous Bacteria , 1999 .

[43]  L. Lake,et al.  Laboratory Testing of a Microbial Enhanced Oil Recovery Process Under Anaerobic Conditions , 1992 .

[44]  W. E. Gledhill,et al.  The extracellular accumulation of metabolic products by hydrocarbon-degrading microorganisms. , 1971, Advances in applied microbiology.

[45]  R. R. Ibatullin,et al.  Additional Oil Production During Field Trials in Russia , 1993 .

[46]  A. Wentzel,et al.  Wax Control by Biocatalytic Degradation in High-Paraffinic Crude Oils , 2007 .

[47]  M. Barrufet,et al.  Profile Modification Due to Polymer Adsorption in Reservoir Rocks , 1993 .

[48]  Cristina M. Quintella,et al.  Selection and Application of Microorganisms to Improve Oil Recovery , 2004 .

[49]  F. Rainey,et al.  Petrotoga mobilis sp. nov., from a North Sea oil-production well. , 1998, International journal of systematic bacteriology.

[50]  T. Torsvik,et al.  Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column. , 2007, International journal of systematic and evolutionary microbiology.

[51]  E. Ron,et al.  High- and low-molecular-mass microbial surfactants , 1999, Applied Microbiology and Biotechnology.

[52]  L. Yi,et al.  The effect of biosurfactant on the interfacial tension and adsorption loss of surfactant in ASP flooding , 2004 .

[53]  G. Voordouw,et al.  Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria , 1996, Applied and environmental microbiology.

[54]  S. Dobrota,et al.  The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition , 1999 .

[55]  Asma Etoumi,et al.  Microbial treatment of waxy crude oils for mitigation of wax precipitation , 2007 .

[56]  Yohey Suzuki,et al.  Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. , 2004, International journal of systematic and evolutionary microbiology.

[57]  M. McInerney,et al.  Anaerobic Production of a Biosurfactant by Bacillus licheniformis JF-2 , 1985, Applied and environmental microbiology.

[58]  T. L. Stewart,et al.  Pore‐scale investigation of biomass plug development and propagation in porous media , 2002, Biotechnology and bioengineering.

[59]  Zahidah Md Zain,et al.  Microbial Enhanced Oil Recovery (MEOR) Technology in Bokor Field, Sarawak , 2001 .

[60]  J. T. Portwood A commercial microbial enhanced oil recovery process: statistical evaluation of a multi-project database , 1995 .

[61]  M. E. Davey,et al.  Microbial selective plugging of sandstone through stimulation of indigenous bacteria in a hypersaline oil reservoir , 1998 .

[62]  M. H. Sayyouh Microbial Enhanced Oil Recovery: Research Studies in the Arabic Area During the Last Ten Years , 2002 .

[63]  F. Widdel,et al.  Anaerobic bacterial metabolism of hydrocarbons , 1998 .

[64]  Li Wang,et al.  A Pilot Test Using Microbial Paraffin-Removal Technology in Liaohe Oilfield , 2003 .

[65]  H. Dahle,et al.  Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. , 2006, International journal of systematic and evolutionary microbiology.

[66]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[67]  Gary L. Andersen,et al.  High-Density Universal 16S rRNA Microarray Analysis Reveals Broader Diversity than Typical Clone Library When Sampling the Environment , 2007, Microbial Ecology.

[68]  A. Mukherjee,et al.  Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples , 2005, Applied Microbiology and Biotechnology.

[69]  B. Ollivier,et al.  Evidence of interspecies hydrogen transfer from glycerol in saline environments , 2002, Extremophiles.

[70]  Sanket J. Joshi,et al.  Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. , 2008, Bioresource technology.

[71]  S. Belyaev,et al.  Activation of the geochemical activity of stratal microflora as the basis of a biotechnology for enhancement of oil recovery , 1998 .

[72]  M. Lijun,et al.  The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir , 2005 .

[73]  J. Foght,et al.  Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing , 1997, Applied and environmental microbiology.

[74]  K. Zengler,et al.  Tapping into microbial diversity , 2004, Nature Reviews Microbiology.

[75]  R. S. Schechter,et al.  Improved Oil Recovery by Surfactant and Polymer Flooding , 1977 .

[76]  N. C. Wardlaw,et al.  Bacterial Fouling in a Model Core System , 1985, Applied and environmental microbiology.

[77]  M. Singer,et al.  Microbial Enhancement of Oil Recovery , 1983, Bio/Technology.

[78]  R. Maier,et al.  Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications , 2000, Applied Microbiology and Biotechnology.

[79]  Rebecca Bryant,et al.  Enhanced Oil Recovery by Means of Microorganisms: Pilot Test , 1996 .

[80]  Donald O. Hitzman,et al.  Recent Successes: MEOR Using Synergistic H2S Prevention and Increased Oil Recovery Systems , 2004 .

[81]  T. Lien,et al.  Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. , 1997, International journal of systematic bacteriology.

[82]  P. Fedorak,et al.  Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields , 2002, Journal of Industrial Microbiology and Biotechnology.

[83]  Roy M. Knapp,et al.  Microbially Enhanced Oil Recovery: Past, Present, and Future , 2005 .

[84]  T. Torsvik,et al.  Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. , 2000, International journal of systematic and evolutionary microbiology.

[85]  S. Cameotra,et al.  Synthesis of biosurfactants in extreme conditions , 1998, Applied Microbiology and Biotechnology.

[86]  S. Giovannoni,et al.  The uncultured microbial majority. , 2003, Annual review of microbiology.

[87]  J. T. Portwood,et al.  Mixed Culture Microbial Enhanced Waterflood: Tertiary MEOR Case Study , 1992 .

[88]  B. Frølund,et al.  Monitoring of microbial souring in chemically treated, produced-water biofilm systems using molecular techniques , 2005, Journal of Industrial Microbiology and Biotechnology.

[89]  E. Ron,et al.  Enhancement of Solubilization and Biodegradation of Polyaromatic Hydrocarbons by the Bioemulsifier Alasan , 1999, Applied and Environmental Microbiology.

[90]  T. L. Smith,et al.  MICROBES AID HEAVY OIL RECOVERY IN VENEZUELA , 1998 .

[91]  S. Vossoughi Profile modification using in situ gelation technology : a review , 2000 .

[92]  B. Patel,et al.  Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. , 1995, International journal of systematic bacteriology.

[93]  K. Sublette,et al.  Oil Field Microbiology , 2007 .

[94]  D. Boone,et al.  Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. , 1991, International journal of systematic bacteriology.

[95]  B. Tindall,et al.  Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. , 2005, International journal of systematic and evolutionary microbiology.

[96]  R. Tanner,et al.  Microbially enhanced oil recovery from unconsolidated limestone cores , 1992 .

[97]  R. Tanner,et al.  Microbial composition of carbonate petroleum reservoir fluids , 1992 .

[98]  F. L. Dietrich,et al.  Microbial Enhanced Oil Recovery Pilot Test in Piedras Coloradas Field, Argentina , 1999 .

[99]  T. E. Burchfield,et al.  Microbial-enhanced waterflooding: Mink Unit project. , 1990 .

[100]  E. Stackebrandt,et al.  Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. , 2001, International journal of systematic and evolutionary microbiology.

[101]  S. Tringe,et al.  Comparative Metagenomics of Microbial Communities , 2004, Science.

[102]  T. Lien,et al.  Desulfotomaculum thermocisternum sp. nov., a Sulfate Reducer Isolated from a Hot North Sea Oil Reservoir , 1996 .

[103]  G. Bognolo Biosurfactants as emulsifying agents for hydrocarbons , 1999 .

[104]  Ole Torsæter,et al.  Microbial improved oil recovery—bacterial induced wettability and interfacial tension effects on oil production , 2006 .

[105]  J. Suflita,et al.  Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. , 2006, International journal of systematic and evolutionary microbiology.

[106]  Lewis R. Brown,et al.  Slowing Production Decline and Extending the Economic Life of an Oil Field: New MEOR Technology , 2002 .

[107]  A. Camper,et al.  Effects of Motility and Adsorption Rate Coefficient on Transport of Bacteria through Saturated Porous Media , 1993, Applied and environmental microbiology.

[108]  E. Delong,et al.  Culture-Dependent and Culture-Independent Characterization of Microbial Assemblages Associated with High-Temperature Petroleum Reservoirs , 2000, Applied and Environmental Microbiology.

[109]  C. Cunningham,et al.  Effect of biosurfactants on crude oil desorption and mobilization in a soil system. , 2005, Environment international.

[110]  R. Knight,et al.  Global patterns in bacterial diversity , 2007, Proceedings of the National Academy of Sciences.

[111]  Sanket J. Joshi,et al.  Biosurfactant production using molasses and whey under thermophilic conditions. , 2008, Bioresource technology.

[112]  D. M. Updegraff Early research on microbial enhanced oil recovery. , 1990 .

[113]  B. Patel,et al.  Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. , 1998, International journal of systematic bacteriology.

[114]  S. L. Fox,et al.  Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery , 2004, Applied biochemistry and biotechnology.

[115]  M. McInerney,et al.  Microbial selective plugging and enhanced oil recovery , 1989, Journal of Industrial Microbiology.

[116]  Eoin L. Brodie,et al.  Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome , 2006, Science.

[117]  E. C. Donaldson,et al.  Conference focuses on microbial enhancement of oil recovery , 1982 .

[118]  Marie Planckaert,et al.  Oil Reservoirs and Oil Production , 2005 .

[119]  H. S. Fogler,et al.  Reduction of porous media permeability from in situ Leuconostoc mesenteroides growth and dextran production , 1996, Biotechnology and bioengineering.

[120]  B. Ollivier,et al.  Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. , 2004, International journal of systematic and evolutionary microbiology.

[121]  Gary L. Andersen,et al.  High-Density Microarray of Small-Subunit Ribosomal DNA Probes , 2002, Applied and Environmental Microbiology.

[122]  D. Standnes,et al.  Spontaneous Imbibition of Aqueous Surfactant Solutions into Neutral to Oil-Wet Carbonate Cores: Effects of Brine Salinity and Composition , 2003 .

[123]  A. Mukherjee,et al.  Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: Some industrial applications of biosurfactants , 2007 .

[124]  H. S. Fogler,et al.  Leuconostoc mesenteroides growth kinetics with application to bacterial profile modification , 1994, Biotechnology and bioengineering.

[125]  Ibrahim M. Banat,et al.  Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review , 1995 .

[126]  B. Patel,et al.  Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. , 1997, International journal of systematic bacteriology.

[127]  J. Costerton,et al.  Plugging of a Model Rock System by Using Starved Bacteria , 1988, Applied and environmental microbiology.

[128]  G. Geesey,et al.  Evaluation of Slime-Producing Bacteria in Oil Field Core Flood Experiments , 1987, Applied and environmental microbiology.

[129]  M. Sanjay,et al.  Paraffin problems in crude oil production and transportation: A review , 1995 .

[130]  Roy M. Knapp,et al.  Design and Implementation of a Microbially Enhanced Oil Recovery Field Pilot, Payne County, Oklahoma , 1992 .

[131]  George W Bush,et al.  National Energy Policy: Report of the National Energy Policy Development Group , 2001 .

[132]  S. M. Ali,et al.  Combined Polymer and Emulsion Flooding Methods for Oil Reservoirs With a Water Leg , 2003 .

[133]  D. Welte,et al.  Advances in petroleum geochemistry , 1984 .

[134]  E. Corre,et al.  Hyperthermophilic and Methanogenic Archaea in Oil Fields , 2005 .

[135]  T. Nazina,et al.  Diversity and activity of microorganisms in the Daqing oil field of China and their potential for biotechnological applications , 2000 .

[136]  C. Jeanthon,et al.  Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. , 2005, FEMS microbiology ecology.

[137]  G. Georgiou,et al.  Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2 , 1994, Applied and environmental microbiology.

[138]  A. K. Rowan,et al.  Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs , 2008, Nature.

[139]  L. Lake,et al.  Enhanced Oil Recovery , 2017 .

[140]  Kerry L. Sublette,et al.  Microbial control of hydrogen sulfide production in a porous medium , 1996 .

[141]  Jan Thomas Rosnes,et al.  Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters , 1994, Applied and environmental microbiology.

[142]  M. Nemati,et al.  Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. , 2001, Biotechnology and bioengineering.

[143]  Chunming Dong,et al.  Microbiological Processes in a High-Temperature Oil Field , 2004, Microbiology.

[144]  N. Youssef,et al.  Comparison of methods to detect biosurfactant production by diverse microorganisms. , 2004, Journal of microbiological methods.

[145]  J. Crolet,et al.  Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. , 1997, International journal of systematic bacteriology.

[146]  T. Onstott,et al.  Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. , 2003, Environmental microbiology.

[147]  E. Rosenberg,et al.  Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate , 1979, Applied and environmental microbiology.

[148]  R. Evitts,et al.  Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir , 2006, Journal of Industrial Microbiology and Biotechnology.

[149]  B. Patel,et al.  Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. , 1998, International journal of systematic bacteriology.

[150]  Xiu-Yuan Wang,et al.  Microorganisms of the high-temperature Liaohe oil field of China and their potential for MEOR , 2000 .

[151]  K. Duncan,et al.  Design of a novel alkaliphilic bacterial system for triggering biopolymer gels , 2000, Journal of Industrial Microbiology & Biotechnology.

[152]  Roy M. Knapp,et al.  Experimental studies of in-situ microbial enhanced oil recovery , 1984 .

[153]  H. Dahle,et al.  Microbial community structure analysis of produced water from a high-temperature North Sea oil-field , 2007, Antonie van Leeuwenhoek.

[154]  M. Wagner Ch. F-3 Microbial Enhancement of Oil Recovery from Carbonate Reservoirs with Complex Formation Characteristics , 1991 .

[155]  Bozhong Mu,et al.  Phylogenetic Diversity of the Archaeal Community in a Continental High-Temperature, Water-Flooded Petroleum Reservoir , 2007, Current Microbiology.

[156]  M. Nemati,et al.  Corrosion risk associated with microbial souring control using nitrate or nitrite , 2005, Applied Microbiology and Biotechnology.

[157]  Ian M. Head,et al.  Biological activity in the deep subsurface and the origin of heavy oil , 2003, Nature.

[158]  B. Patel,et al.  Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. , 1997, FEMS microbiology letters.

[159]  J. Connan Biodegradation of Crude Oils in Reservoirs , 1984 .

[160]  Sugihardjo,et al.  Microbial Core Flooding Experiments Using Indigenous Microbes , 1999 .

[161]  B. Ollivier,et al.  Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. , 2007, International journal of systematic and evolutionary microbiology.

[162]  T. Lien,et al.  Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters , 1991, Applied and environmental microbiology.

[163]  W. Verstraete,et al.  Influence of Denitrification on the Corrosion of Iron and Stainless Steel Powder , 2000 .

[164]  D. Westlake,et al.  Quantitative Reverse Sample Genome Probing of Microbial Communities and Its Application to Oil Field Production Waters , 1993, Applied and environmental microbiology.

[165]  P. Weimer,et al.  Possible nonanthropogenic origin of two methanogenic isolates from oil‐producing wells in the san miguelito field, ventura county, California , 1989 .

[166]  Eoin L. Brodie,et al.  Urban aerosols harbor diverse and dynamic bacterial populations , 2007, Proceedings of the National Academy of Sciences.

[167]  G. Okpokwasili,et al.  Enhancement of recovery of residual oil using a biosurfactant slug , 2006 .

[168]  Hassan Mohabatkar,et al.  The in situ microbial enhanced oil recovery in fractured porous media , 2007 .

[169]  C. Woese,et al.  Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. , 1994, International journal of systematic bacteriology.

[170]  J. Suflita,et al.  Confined subsurface microbial communities in Cretaceous rock , 1997, Nature.

[171]  R. Mueller,et al.  Kinetic investigation of microbial souring in porous media using microbial consortia from oil reservoirs , 1994, Biotechnology and bioengineering.

[172]  Bozhong Mu,et al.  Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. , 2006, FEMS microbiology letters.

[173]  R. S. Bryant,et al.  MEOR SCREENING CRITERIA FIT 27 % OF U.S. OIL RESERVOIRS , 1991 .

[174]  R. M. Knapp,et al.  In Situ Biosurfactant Production by Bacillus Strains Injected into a Limestone Petroleum Reservoir , 2006, Applied and Environmental Microbiology.

[175]  E. Mikami,et al.  Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. , 1991, Archives of Microbiology.

[176]  J. T. Portwood,et al.  A Commercial Microbial Enhanced Oil Recovery Technology: Evaluation of 322 Projects , 1995 .

[177]  H. Fogler,et al.  Alteration of the growth rate and lag time of Leuconostoc mesenteroides NRRL-B523. , 2001, Biotechnology and bioengineering.

[178]  F. Peypoux,et al.  Controlled biosynthesis of Val7- and Leu7-surfactins , 2004, Applied Microbiology and Biotechnology.

[179]  J. Bae,et al.  Microbial Profile Modification With Spores , 1996 .

[180]  S. Cameotra,et al.  Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis , 1998, Journal of Industrial Microbiology and Biotechnology.

[181]  B. Patel,et al.  Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. , 1997, FEMS microbiology letters.

[182]  C. Joulian,et al.  Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. , 2004, International journal of systematic and evolutionary microbiology.

[183]  I. Banat,et al.  Isolation of biosurfactant‐producing bacteria, product characterization, and evaluation , 1991 .

[184]  T. Hoaki,et al.  Distribution and Physiological Characteristics of Hyperthermophiles in the Kubiki Oil Reservoir in Niigata, Japan , 2000, Applied and Environmental Microbiology.

[185]  M. Ptak,et al.  Lipopeptides with Improved Properties: Structure by NMR, Purification by HPLC and Structure–Activity Relationships of New Isoleucyl‐rich Surfactins , 1997, Journal of peptide science : an official publication of the European Peptide Society.

[186]  V. Moses Microbes and oil recovery. , 1987, Microbiological sciences.

[187]  Daniel Rokhsar,et al.  Reverse Methanogenesis: Testing the Hypothesis with Environmental Genomics , 2004, Science.

[188]  M. H. Sayyouh,et al.  Modelling and laboratory investigation of microbial enhanced oil recovery , 1996 .

[189]  T. E. Burchfield,et al.  Microbial-Enhanced Waterflooding Field Pilots , 1993 .

[190]  B. Patel,et al.  Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. , 1999, International journal of systematic bacteriology.

[191]  A. Galushko,et al.  Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate , 1999, Archives of Microbiology.

[192]  Laboratory Studies of MEOR in the Micromodel as a Fractured System , 2007 .

[193]  T. Stachelhaus,et al.  Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. , 1995, Science.

[194]  Nina M. Rach Industry stable in North America , 2006 .

[195]  A. Cunningham,et al.  Effects of starvation on bacterial transport through porous media , 2007 .

[196]  D. Lovley,et al.  A hydrogen-based subsurface microbial community dominated by methanogens , 2002, Nature.

[197]  E. Stackebrandt,et al.  Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. , 2002, International journal of systematic and evolutionary microbiology.

[198]  R. R. Ibatullin,et al.  Use of Microorganisms in the Biotechnology for the Enhancement of Oil Recovery , 2004, Microbiology.

[199]  R. Samson,et al.  Clogging of a limestone fracture by stimulating groundwater microbes. , 2001, Water research.

[200]  K. Timmis,et al.  Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50 , 1996, Biotechnology and applied biochemistry.

[201]  M. K. Dabbous Displacement of Polymers in Waterflooded Porous Media and Its Effects on a Subsequent Micellar Flood , 1977 .

[202]  A. Lysenko,et al.  Desulfacinum subterraneumsp. nov., a New Thermophilic Sulfate-Reducing Bacterium Isolated from a High-Temperature Oil Field , 2001, Microbiology.

[203]  P. Bradley,et al.  Alteration of aquifer geochemistry by microorganisms. , 1997 .

[204]  A. Bodour,et al.  Biosurfactants: Types, Screening Methods, and Applications , 2003 .

[205]  T. Lien,et al.  Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters , 1992, Applied and environmental microbiology.

[206]  D. Lovley,et al.  Extending the Upper Temperature Limit for Life , 2003, Science.

[207]  C. Inoue,et al.  A fundamental study of microbial attachment and transport in porous media for the design of MEOR , 2005 .

[208]  A. J. Sheehy,et al.  Field Studies of Microbial EOR , 1990 .

[209]  T. Yen,et al.  Selection of Bacteria with Favorable Transport Properties Through Porous Rock for the Application of Microbial-Enhanced Oil Recovery , 1983, Applied and environmental microbiology.

[210]  G. Wanner,et al.  Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. , 1999, International journal of systematic bacteriology.

[211]  F. Widdel,et al.  Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria , 2004, Biodegradation.

[212]  A. Wentzel,et al.  Bacterial metabolism of long-chain n-alkanes , 2007, Applied Microbiology and Biotechnology.

[213]  Hui Li,et al.  Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. , 2007, FEMS microbiology ecology.

[214]  R. Lappan,et al.  Effect of Bacterial Polysaccharide Production on Formation Damage , 1992 .

[215]  M. Mehmetoḡlu,et al.  Bacteria for Improvement of Oil Recovery: A Laboratory Study , 2002 .

[216]  T. Hoaki,et al.  Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. , 2001, International journal of systematic and evolutionary microbiology.

[217]  Yuehui She,et al.  Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery , 2007, Microbiology.

[218]  T. Nazina,et al.  Occurrence and geochemical activity of microorganisms in high‐temperature, water‐flooded oil fields of Kazakhstan and Western Siberia , 1995 .

[219]  Heiji Enomoto,et al.  Improvement of Sweep Efficiency by Microbial EOR Process in Fuyu Oilfield, China , 2001 .

[220]  K. Sublette,et al.  Evaluation of a microbial method to reduce hydrogen sulfide levels in a porous rock biofilm , 1992, Journal of Industrial Microbiology.

[221]  I. Lazar,et al.  MEOR, Recent Field Trials in Romania: Reservoir Selection, Type of Inoculum, Protocol for Well Treatment and Line Monitoring , 1993 .

[222]  R. Tanner,et al.  Assessing the Effects of Microbial Metabolism and Metabolites on Reservoir Pore Structure , 1991 .

[223]  G. Voordouw,et al.  Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine , 2000, Applied and Environmental Microbiology.

[224]  Mehdi Nemati,et al.  Impact of Nitrate‐Mediated Microbial Control of Souring in Oil Reservoirs on the Extent of Corrosion , 2001, Biotechnology progress.

[225]  W. Hamilton,et al.  The same species of sulphate‐reducing Desulfomicrobium occur in different oil field environments in the North Sea , 1999, Letters in applied microbiology.

[226]  E. P. Robertson The use of bacteria to reduce water influx in producing oil wells , 1996 .

[227]  Hauke Harms,et al.  Transport of microorganisms in the terrestrial subsurface: in situ and laboratory methods. , 2007 .

[228]  G. Georgiou,et al.  Surface–Active Compounds from Microorganisms , 1992, Bio/Technology.

[229]  Michael Bock,et al.  The potential of Bacillus licheniformis strains for in situ enhanced oil recovery , 1997 .

[230]  V. Tyagi,et al.  Microbial Surfactants: A Review , 2006 .

[231]  F. Grimont,et al.  Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. , 1992, International journal of systematic bacteriology.

[232]  I. Steen,et al.  Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. , 1998, International journal of systematic bacteriology.

[233]  E. Bonch‐Osmolovskaya,et al.  Dissimilatory Reduction of Fe(III) by Thermophilic Bacteria and Archaea in Deep Subsurface Petroleum Reservoirs of Western Siberia , 1999, Current Microbiology.

[234]  M. M. Stefanescu,et al.  MEOR, the Suitable Bacterial Inoculum According to the Kind of Technology Used: Results From Romania's Last 20 Years' Experience , 1992 .

[235]  F. L. Dietrich,et al.  Microbial EOR technology advancement: Case studies of successful projects , 1996 .

[236]  C. Jeanthon,et al.  Characterization of long-chain fatty-acid-degrading syntrophic associations from a biodegraded oil reservoir. , 2005, Research in microbiology.

[237]  M. McInerney,et al.  Properties of the biosurfactant produced byBacillus licheniformis strain JF-2 , 1990, Journal of Industrial Microbiology.

[238]  Bernard Ollivier,et al.  Microbiology of petroleum reservoirs , 2000, Antonie van Leeuwenhoek.

[239]  J. Imhoff,et al.  Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. , 2001, FEMS microbiology letters.

[240]  N. Bordoloi,et al.  Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. , 2008, Colloids and surfaces. B, Biointerfaces.

[241]  D. Updegraff,et al.  Microbiology in the petroleum industry. , 1954, Bacteriological reviews.

[242]  K. Sublette,et al.  Microbial control of the production of hydrogen sulfide by sulfate‐reducing bacteria , 1990, Biotechnology and bioengineering.

[243]  D. Sabatini,et al.  Rhamnolipid biosurfactant mixtures for environmental remediation. , 2008, Water research.

[244]  P. Janssen Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes , 2006, Applied and Environmental Microbiology.

[245]  N. Ghaemi,et al.  Microbial Prevention of Wax Precipitation in Crude Oil by Biodegradation Mechanism , 2003 .

[246]  S. P. Trushenski,et al.  Micellar Flooding - Fluid Propagation, Interaction, and Mobility , 1974 .

[247]  Sumaryana,et al.  Field Test of the Indigenous Microbes for Oil Recovery, Ledok Field, Central Java , 1999 .

[248]  D. Sabatini,et al.  Basis for formulating biosurfactant mixtures to achieve ultra low interfacial tension values against hydrocarbons , 2007, Journal of Industrial Microbiology & Biotechnology.

[249]  P. Luton,et al.  The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. , 2002, Microbiology.

[250]  C. Woese,et al.  Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. , 1999, International journal of systematic bacteriology.

[251]  A. Monson,et al.  Isolation of Live Cretaceous (121–112 Million Years Old) Halophilic Archaea from Primary Salt Crystals , 2007 .

[252]  Irene Gullapalli,et al.  Laboratory Design and Field Implementation of Microbial Profile Modification Process , 2000 .

[253]  M. Ptak,et al.  Production, isolation and characterization of [Leu4]- and [Ile4]surfactins from Bacillus subtilis , 1995, Letters in Peptide Science.

[254]  A. Lysenko,et al.  The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field , 2006, Microbiology.

[255]  George Georgiou,et al.  Critical evaluation of MEOR processes , 1989 .

[256]  T. L. Stewart,et al.  Biomass plug development and propagation in porous media. , 2001, Biotechnology and bioengineering.

[257]  J. Fisher Distribution and occurrence of aliphatic acid anions in deep subsurface waters , 1987 .

[258]  Ajay Singh,et al.  Surfactants in microbiology and biotechnology: Part 2. Application aspects. , 2007, Biotechnology advances.

[259]  M. S. Al-Blehed,et al.  Possible Applications of MEOR to the Arab Oil Fields , 1993 .

[260]  T. Tourova,et al.  Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillu , 2001, International journal of systematic and evolutionary microbiology.

[261]  B. Patel,et al.  Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir , 1995 .

[262]  B. Patel,et al.  Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. , 2004, International journal of systematic and evolutionary microbiology.

[263]  Swaranjit Singh Cameotra,et al.  Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions , 1997 .

[264]  B. Patel,et al.  Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. , 1997, FEMS microbiology letters.

[265]  B. Patel,et al.  Mahella australiensis gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from an Australian oil well. , 2004, International journal of systematic and evolutionary microbiology.

[266]  J. Suflita,et al.  Cresol metabolism by the sulfate-reducing bacterium Desulfotomaculum sp. strain Groll. , 1999, Canadian journal of microbiology.

[267]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[268]  E. S. Bastin,et al.  THE PRESENCE OF SULPHATE REDUCING BACTERIA IN OIL FIELD WATERS. , 1926, Science.

[269]  M. McInerney,et al.  Microbial Penetration through Nutrient-Saturated Berea Sandstone , 1985, Applied and environmental microbiology.

[270]  D. Stahl,et al.  Isolation of Three Species of Geotoga and Petrotoga: Two New Genera, Representing a New Lineage in the Bacterial Line of Descent Distantly Related to the “Thermotogales” , 1993 .

[271]  M. Nakano,et al.  Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth , 1997, Journal of bacteriology.

[272]  Gerrit Voordouw,et al.  Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite , 2004, Journal of bacteriology.

[273]  N. Youssef,et al.  Importance of 3-Hydroxy Fatty Acid Composition of Lipopeptides for Biosurfactant Activity , 2005, Applied and Environmental Microbiology.

[274]  D. Menzie,et al.  A halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery , 1983 .

[275]  M. McInerney,et al.  Emulsifying activity in thermophilic and extremely thermophilic microorganisms , 2005, Journal of Industrial Microbiology.

[276]  K. Zengler,et al.  Cultivating the uncultured , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[277]  Teh Fu Yen,et al.  Biopolymer plugging effect: laboratory-pressurized pumping flow studies , 2003 .

[278]  J. Hayes,et al.  Biological formation of ethane and propane in the deep marine subsurface , 2006, Proceedings of the National Academy of Sciences.

[279]  J. Costerton,et al.  Nutrient Resuscitation and Growth of Starved Cells in Sandstone Cores: a Novel Approach to Enhanced Oil Recovery , 1988, Applied and environmental microbiology.

[280]  Lyle Nelson,et al.  Six Years of Paraffin Control and Enhanced Oil Recovery with the Microbial Product, Para-Bac™ , 1993 .

[281]  K. McLean,et al.  A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs , 1996 .

[282]  P. D. Moffitt,et al.  Application of a Microbial Selective-Plugging Process at the North Burbank Unit: Prepilot Tests , 1996 .

[283]  Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water , 1995, Archives of Microbiology.

[284]  T. Phelps,et al.  Drilling, Coring, and Sampling Subsurface Environments , 2008 .

[285]  M. Amoozegar,et al.  Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery , 2008, Biotechnology Letters.

[286]  J. Costerton,et al.  Enhanced oil recovery three dimensional sandpack simulation of ultramicrobacteria resuscitation in reservoir formation , 1992 .

[287]  M. R. Islam,et al.  Mathematical Modelling And Scaling Up Of Microbial Enhanced Oil Recovery , 1993 .

[288]  E. Sunde,et al.  Microbial Control of Hydrogen Sulfide Production in Oil Reservoirs , 2005 .

[289]  Alejandro Maure,et al.  Waterflooding Optimization Using Biotechnology: 2-Year Field Test, La Ventana Field, Argentina , 2001 .

[290]  J. Varley,et al.  The production of Surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism , 1999 .

[291]  W. Goddard,et al.  Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery , 2007, Biotechnology and bioengineering.

[292]  P. Caumette,et al.  Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. , 2004, International journal of systematic and evolutionary microbiology.

[293]  E. Rosenberg,et al.  Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties , 1979, Applied and environmental microbiology.

[294]  M. A. Rauf,et al.  Enhanced Oil Recovery Through Microbial Treatment , 2003 .

[295]  Ling Zhao,et al.  Application of bio-huff-`n`-puff technology at Jilin oil field , 1995 .

[296]  Roy M. Knapp,et al.  The Use of Microorganisms To Increase the Recovery of Oil From Cores , 1985 .

[297]  R. S. Bryant,et al.  Evaluation of Microbial Systems in Porous Media for EOR , 1988 .

[298]  Zhenyu Yang,et al.  Microbe-Enhanced Oil Recovery Technology Obtains Huge Success in Low-Permeability Reservoirs in Daqing Oilfield , 2006 .

[299]  Turgay Pekdemir,et al.  Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions , 2003 .

[300]  Edward F. DeLong,et al.  Microbial community genomics in the ocean , 2005, Nature Reviews Microbiology.

[301]  M. McInerney,et al.  Effect of Nitrate on Biogenic Sulfide Production , 1986, Applied and environmental microbiology.

[302]  Dennis Denney Paraffin Treatments: Hot Oil/Hot Water vs. Crystal Modifiers , 2001 .

[303]  R. Nilsen,et al.  Methanococcus thermolithotrophicus Isolated from North Sea Oil Field Reservoir Water , 1996, Applied and environmental microbiology.

[304]  B. Patel,et al.  Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. , 1996, International journal of systematic bacteriology.

[305]  E. Delong,et al.  Geochemical Influence on Diversity and Microbial Processes in High Temperature Oil Reservoirs , 2003 .

[306]  E. Sunde,et al.  Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection , 2002, Applied Microbiology and Biotechnology.

[307]  M. McInerney,et al.  Effect of microbial growth on pore entrance size distribution in sandstone cores , 1986, Journal of Industrial Microbiology.

[308]  A. Mills,et al.  Manual of environmental microbiology. , 2007 .

[309]  Michael Jefferson,et al.  Hydrocarbons and the evolution of human culture , 2003, Nature.

[310]  D. Prieur,et al.  Hot subterranean biosphere in a continental oil reservoir , 1995, Nature.

[311]  H. Stan-Lotter,et al.  Desulfovibrio vietnamensissp.nov., a Halophilic Sulfate-Reducing Bacterium from Vietnamese Oil Fields , 1996 .

[312]  Michael Wagner,et al.  Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration , 1998, Journal of bacteriology.

[313]  P. Stewart,et al.  Control of microbial souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column , 1996, Journal of Industrial Microbiology.

[314]  Tian-lei Qiu,et al.  Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. , 2007, International journal of systematic and evolutionary microbiology.

[315]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[316]  K. Sublette,et al.  Ch. F-7 Microbial Control of the Production of Sulfide , 1991 .

[317]  G. Hornberger,et al.  Physical and chemical factors influencing transport of microorganisms through porous media , 1991, Applied and environmental microbiology.

[318]  C. Hubert,et al.  Oil Field Souring Control by Nitrate-Reducing Sulfurospirillum spp. That Outcompete Sulfate-Reducing Bacteria for Organic Electron Donors , 2007, Applied and Environmental Microbiology.

[319]  M. Nemati,et al.  Control of biogenic H2S production with nitrite and molybdate , 2001, Journal of Industrial Microbiology and Biotechnology.

[320]  N. Birkeland Sulfate-Reducing Bacteria and Archaea , 2005 .