Synthesis and luminescent properties of TiO2:Eu3+ nanotubes

Abstract TiO2 nanotubes doped with Eu3+ ions have been fabricated by a simple hydrothermal process. The formation mechanism of TiO2:Eu3+ nanotubes is proposed in detail. The nanotubes are evolved from the rolling up of the anatase sheets, which was verified by characterizations using the X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscope (SEM). Compared with the TiO2:Eu3+ nanocrystals, TiO2:Eu3+ nanotubes exhibit considerably stronger photoluminescence (PL) under the excitation of 393 nm. Furthermore, the PL intensity increases with the increasing of Eu3+ concentration in TiO2 nanotubes, and concentration quenching occurs when Eu3+ concentration exceeds 2.0 mol%. In addition, the luminescent lifetime of the TiO2:Eu3+ nanotubes is also examined. It is expected that the TiO2:Eu3+ nanotubes can be used as novel semiconductor luminescence materials.

[1]  Jun Lin,et al.  One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties , 2009 .

[2]  Jagannath,et al.  Photoluminescence studies on Eu doped TiO2 nanoparticles , 2009 .

[3]  Jiye Fang,et al.  Host-Sensitized Luminescence of Dy3 + in Nanocrystalline β ­ Ga2 O 3 Prepared by a Pechini-Type Sol-Gel Process , 2005 .

[4]  David C. Morton,et al.  Alkoxy sol-gel derived Y3−xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors , 2001 .

[5]  Lian-Mao Peng,et al.  Structure and formation ofH2Ti3O7nanotubes in an alkali environment , 2005 .

[6]  P. Iacconi,et al.  Effect of different fluxes on the morphology of the LaPO4:Ce, Tb phosphor , 2005 .

[7]  Yadong Li,et al.  Synthesis and characterization of ion-exchangeable titanate nanotubes. , 2003, Chemistry.

[8]  Takamasa Ishigaki,et al.  Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists. , 2006, The journal of physical chemistry. B.

[9]  Ning Wang,et al.  Formation mechanism of TiO2 nanotubes , 2003 .

[10]  Jun Lin,et al.  Silica Spheres Coated with YVO4:Eu3+ Layers via Sol−Gel Process: A Simple Method To Obtain Spherical Core−Shell Phosphors , 2005 .

[11]  Jun Lin,et al.  Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[12]  M. Casu,et al.  Synthesis, characterisation and optical properties of nanocrystalline Y2O3–Eu3+ dispersed in a silica matrix by a deposition–precipitation method , 2003 .

[13]  W. Cao,et al.  Luminescent properties of rare earth complexes of Gd1 − xEux(TTA)3Dipy in nano-TiO2 , 2008 .

[14]  A. Kleinhammes,et al.  Layered Nanostructures of Delaminated Anatase: Nanosheets and Nanotubes , 2008 .

[15]  W. Stręk,et al.  Rare-earth doped nanocrystalline phosphors for field emission displays , 2007 .

[16]  Longtu Li,et al.  Synthesis and photoluminescence of CdS QDs in ZrO2 nanotubes by sequential chemical bath deposition , 2011 .

[17]  Jun Lin,et al.  Self-Assembled 3D Flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) Microarchitectures: Ethylene Glycol-Mediated Hydrothermal Synthesis and Luminescent Properties , 2008 .

[18]  Hongrui Peng,et al.  Hydrothermal Synthesis and Characterization of YVO4 and YVO4:Eu3+ Nanobelts and Polyhedral Micron Crystals , 2008 .

[19]  Chia Chin Wu,et al.  Synthesis and VUV Photoluminescence Characterization of (Y,Gd)(V,P)O4:Eu3+ as a Potential Red-emitting PDP Phosphor , 2007 .

[20]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[21]  Yanhua Song,et al.  Facile Surfactant- and Template-Free Synthesis and Luminescent Properties of One-Dimensional Lu2O3:Eu3+ Phosphors , 2009 .

[22]  Ce Wang,et al.  Photoluminescence properties of the rare-earth ions in the TiO2 host nanofibers prepared via electrospinning , 2009 .

[23]  Jun Lin,et al.  Size-Tailored Synthesis and Luminescent Properties of One-Dimensional Gd2O3:Eu3+ Nanorods and Microrods , 2007 .

[24]  V. Sudarsan,et al.  Surface Eu3+ ions are different than “bulk” Eu3+ ions in crystalline doped LaF3 nanoparticles , 2005 .

[25]  A. Kleinhammes,et al.  The structure of multilayered titania nanotubes based on delaminated anatase , 2008 .

[26]  E. Xie,et al.  Photoluminescence and energy transfer of terbium doped titania film , 2006 .

[27]  Jun Lin,et al.  Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol−Gel Soft Lithography , 2002 .

[28]  Z. Ding,et al.  Strong photoluminescence emission of Eu:TiO2 nanotubes , 2007 .

[29]  Yanhua Song,et al.  Facile Hydrothermal Synthesis and Luminescent Properties of Large-Scale GdVO4:Eu3+ Nanowires , 2009 .