Classification of parenchymal abnormality in scleroderma lung using a novel approach to denoise images collected via a multicenter study.

[1]  David A Lynch,et al.  Quantitative CT of fibrotic interstitial lung disease. , 2007, Chest.

[2]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[3]  E. V. van Beek,et al.  Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). , 2006, Academic radiology.

[4]  Charlie Strange,et al.  Cyclophosphamide versus placebo in scleroderma lung disease. , 2006, The New England journal of medicine.

[5]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[6]  Richard A. Robb,et al.  High resolution multidetector CT aided tissue analysis and quantification of lung fibrosis , 2006, SPIE Medical Imaging.

[7]  Jin Mo Goo,et al.  Computer-aided diagnosis of localized ground-glass opacity in the lung at CT: initial experience. , 2005, Radiology.

[8]  David A Lynch,et al.  Idiopathic interstitial pneumonias: CT features. , 2005, Radiology.

[9]  Sumit K. Shah,et al.  Computer-aided lung nodule detection in CT: results of large-scale observer test. , 2005, Academic radiology.

[10]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[11]  Ilias Maglogiannis,et al.  Characterization of digital medical images utilizing support vector machines , 2004, BMC Medical Informatics Decis. Mak..

[12]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[13]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[14]  D. Hansell,et al.  Obstructive lung diseases: texture classification for differentiation at CT. , 2003, Radiology.

[15]  Gary K Grunwald,et al.  Quantitative CT indexes in idiopathic pulmonary fibrosis: relationship with physiologic impairment. , 2003, Radiology.

[16]  Michael F McNitt-Gray,et al.  AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. , 2002, Radiographics : a review publication of the Radiological Society of North America, Inc.

[17]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[18]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[19]  E. Hoffman,et al.  Computer recognition of regional lung disease patterns. , 1999, American journal of respiratory and critical care medicine.

[20]  J. A. Calvin Regression Models for Categorical and Limited Dependent Variables , 1998 .

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[23]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[24]  Roel Bosker,et al.  Standard Errors and Sample Sizes for Two-Level Research , 1993 .

[25]  J. Remy,et al.  Computed Tomography Assessment of Ground‐Glass Opacity: Semiology and Significance , 1993, Journal of thoracic imaging.

[26]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[27]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[28]  W. Webb High resolution lung computed tomography. Normal anatomic and pathologic findings. , 1991, The Radiologic clinics of North America.

[29]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..