Leader-Follower Approach using Full-State Linearization via Dynamic Feedback

In this work, the leader-follower control problem is solved by using full-state linearization via dynamic feedback. This approach has certain advantages over the well known input-output linearization such as no relative point selection, simple extension to n-robots formation and representation of all dynamics in case of car-like robot model. Simulation results verify the validity and limitation of these controllers by Matlab. The new 3-D robot simulator Gazebo with robot server Player is also used to verify the results

[1]  Vijay Kumar,et al.  Cooperative localization and control for multi-robot manipulation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[2]  Maja J. Mataric,et al.  Robot formations using only local sensing and control , 2001, Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515).

[3]  J. Sanchez,et al.  Sliding mode control for robot formations , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[4]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[5]  Vijay Kumar,et al.  Hybrid control of formations of robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[7]  Richard T. Vaughan,et al.  On device abstractions for portable, reusable robot code , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[8]  Masafumi Yamashita,et al.  Erratum: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 2006, SIAM J. Comput..

[9]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[10]  Marilena Vendittelli,et al.  WMR control via dynamic feedback linearization: design, implementation, and experimental validation , 2002, IEEE Trans. Control. Syst. Technol..