Optimizing Process Economic Performance Using Model Predictive Control

The current paradigm in essentially all industrial advanced process control systems is to decompose a plant’s economic optimization into two levels. The first level performs a steady-state optimization. This level is usually referred to as real-time optimization (RTO). The RTO determines the economically optimal plant operating conditions (setpoints) and sends these setpoints to the second level, the advanced control system, which performs a dynamic optimization. Many advanced process control systems use some form of model predictive control or MPC for this layer. The MPC uses a dynamic model and regulates the plant dynamic behavior to meet the setpoints determined by the RTO.

[1]  K. Onogi,et al.  Periodic control of continuous stirred tank reactors—I: The pi criterion and its applications to isothermal cases , 1981 .

[2]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[3]  R. Bellman,et al.  Linear Programming and Economic Analysis. , 1960 .

[4]  J. Fraser Forbes,et al.  Extended design cost: a performance criterion for real-time optimization systems , 2000 .

[5]  Sten Bay Jørgensen,et al.  Unreachable Setpoints in Model Predictive Control , 2008, IEEE Transactions on Automatic Control.

[6]  M. Guay,et al.  Adaptive extremum seeking control of nonisothermal continuous stirred tank reactors with temperature constraints , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  Darci Odloak,et al.  Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit , 2000 .

[8]  Wolfgang Marquardt,et al.  Integration of Model Predictive Control and Optimization of Processes: Enabling Technology for Market Driven Process Operation , 2000 .

[9]  Wolfgang Marquardt,et al.  Structural Concepts for Optimization Based Control of Transient Processes , 2000 .

[10]  R. Tournier,et al.  Steady State Optimization Inside Model Predictive Control , 1991, 1991 American Control Conference.

[11]  L. Grüne,et al.  Infinite Horizon Optimal Control , 2011 .

[12]  James E. Bailey,et al.  Analytical optimization and sensitivity analysis of forced periodic chemical processes , 1980 .

[13]  M. Guay,et al.  ADAPTIVE EXTREMUM SEEKING CONTROL OF NONLINEAR DYNAMIC SYSTEMS WITH PARAMETRIC UNCERTAINTIES , 2002 .

[14]  C. R. Cutler,et al.  Optimal Solution of Dynamic Matrix Control with Linear Programing Techniques (LDMC) , 1985, 1985 American Control Conference.

[15]  J. Rawlings,et al.  Linear model predictive control of unstable processes , 1993 .

[16]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[17]  Thomas E. Marlin,et al.  Design cost: a systematic approach to technology selection for model-based real-time optimization systems , 1996 .

[18]  A. C. Zanin,et al.  Multivariable control and real-time optimization- : an industrial practical view , 2005 .

[19]  Alain Haurie,et al.  On Existence of Overtaking Optimal Trajectories Over an Infinite Time Horizon , 1976, Math. Oper. Res..

[20]  C. R. Cutler,et al.  Real time optimization with multivariable control is required to maximize profits , 1983 .

[21]  C. V. Rao,et al.  Steady states and constraints in model predictive control , 1999 .

[22]  M. Guay,et al.  Extremum seeking control of nonlinear systems with parametric uncertainties and state constraints , 2004, Proceedings of the 2004 American Control Conference.

[23]  Wolfgang Marquardt,et al.  Towards integrated dynamic real-time optimization and control of industrial processes , 2003 .

[24]  John R. Beaumont,et al.  Control and Coordination in Hierarchical Systems , 1981 .

[25]  Kenneth R. Muske Steady-state target optimization in linear model predictive control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[26]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part I: Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures , 1980 .

[27]  C. Brosilow,et al.  A Linear Programming Approach to Constrained Multivariable Process Control , 1988 .

[28]  Wolfgang Marquardt,et al.  Integration of Economical Optimization and Control for Intentionally Transient Process Operation , 2007 .

[29]  James E. Bailey,et al.  Modification of Consecutive-Competitive Reaction Selectivity by Periodic Operation , 1980 .

[30]  P.M.J. Van den Hof,et al.  DEGREES OF FREEDOM ANALYSIS OF ECONOMIC DYNAMIC OPTIMAL PLANTWIDE OPERATION , 2007 .

[31]  F. Ramsey,et al.  THE MATHEMATICAL THEORY OF SAVING , 1928 .

[32]  Thomas E. Marlin,et al.  Designing plant experiments for real-time optimization systems , 2001 .

[33]  Sebastian Engell,et al.  FEEDBACK CONTROL FOR OPTIMAL PROCESS OPERATION , 2007 .

[34]  Tao Zhang,et al.  Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainties , 2003, Autom..

[35]  Sigurd Skogestad,et al.  Coordinator MPC for maximizing plant throughput , 2008, Comput. Chem. Eng..

[36]  Sigurd Skogestad,et al.  Plantwide control: the search for the self-optimizing control structure , 2000 .

[37]  Masakazu Matsubara,et al.  Periodic control of continuous stirred tank reactors—II Cases of a nonisothermal single reactor , 1982 .

[38]  Thomas E. Marlin,et al.  The effect of model fidelity on real-time optimization performance , 2004, Comput. Chem. Eng..

[39]  Thomas E Marlin,et al.  Process Control , 1995 .

[40]  Babu Joseph,et al.  Performance and stability analysis of LP‐MPC and QP‐MPC cascade control systems , 1999 .

[41]  J. B. Riggs,et al.  On-line optimization of the Tennessee Eastman challenge problem , 2000 .

[42]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[43]  Miroslav Krstic,et al.  Stability of extremum seeking feedback for general nonlinear dynamic systems , 2000, Autom..

[44]  William L. Luyben,et al.  Plantwide Process Control , 1998 .

[45]  Lorenz T. Biegler,et al.  Optimization approaches to nonlinear model predictive control , 1991 .

[46]  Thomas E. Marlin,et al.  Results analysis for real-time optimization (RTO): Deciding when to change the plant operation , 1996 .

[47]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[48]  Efstratios N. Pistikopoulos,et al.  Recent advances in optimization-based simultaneous process and control design , 2004, Comput. Chem. Eng..

[49]  M. Graells,et al.  Real-Time Evolution for On-line Optimization of Continuous Processes , 2002 .

[50]  Darci Odloak,et al.  Integrating real-time optimization into the model predictive controller of the FCC system , 2002 .

[51]  A. Leizarowitz Infinite horizon autonomous systems with unbounded cost , 1985 .

[52]  James E. Bailey,et al.  PERIODIC OPERATION OF CHEMICAL REACTORS: A REVIEW , 1974 .