Exciton–polariton condensates near the Dirac point in a triangular lattice

Dirac particles, massless relativistic entities, obey linear energy dispersions and hold important implications in particle physics. The recent discovery of Dirac fermions in condensed matter systems including graphene and topological insulators has generated a great deal of interest in exploring the relativistic properties associated with Dirac physics in solid-state materials. In addition, there are stimulating research activities to engineer Dirac particles, elucidating their exotic physical properties in a controllable setting. One of the successful platforms is the ultracold atom-optical lattice system, whose dynamics can be manipulated and probed in a clean environment. A microcavity exciton-polariton-lattice system offers the advantage of forming high-orbital condensation in non-equilibrium conditions, which enables one to explore novel quantum orbital order in two dimensions. In this paper, we experimentally construct the band structures near Dirac points, the vertices of the first hexagonal Brillouin zone with exciton-polariton condensates trapped in a triangular lattice.

[1]  D. Urban,et al.  Massless Dirac-Weyl Fermions in a T3 Optical Lattice , 2009, 0909.3035.

[2]  M. Segev,et al.  Conical diffraction and gap solitons in honeycomb photonic lattices , 2006, 2007 Quantum Electronics and Laser Science Conference.

[3]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[4]  GaAs microcavity exciton‐polaritons in a trap , 2008 .

[5]  Gregor Weihs,et al.  Condensation of Semiconductor Microcavity Exciton Polaritons , 2002, Science.

[6]  N. Grandjean Polariton lasers , 2012, ISLC 2012 International Semiconductor Laser Conference.

[7]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[8]  R. Seisyan Diamagnetic excitons and exciton magnetopolaritons in semiconductors , 2012 .

[9]  A. Lemaître,et al.  Photon lasing in GaAs microcavity : Similarities with a polariton condensate , 2007, 0709.4372.

[10]  A. Forchel,et al.  Higher order coherence of exciton-polariton condensates , 2009, 0910.2978.

[11]  C. Anderson The Positive Electron , 1933 .

[12]  R. Blatt,et al.  Quantum simulation of the Dirac equation , 2009, Nature.

[13]  Hartmut Haug,et al.  Exciton-polariton Bose-Einstein condensation , 2010 .

[14]  E. Solano,et al.  Klein tunneling and Dirac potentials in trapped ions , 2010, 1004.5400.

[15]  F. D. M. Haldane,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2008 .

[16]  K. West,et al.  Bose-Einstein Condensation of Microcavity Polaritons in a Trap , 2007, Science.

[17]  Baigeng Wang,et al.  Single Dirac cone with a flat band touching on line-centered-square optical lattices , 2010 .

[18]  T. Ohta,et al.  Quasiparticle dynamics in graphene , 2007 .

[19]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[20]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[21]  Biao Wu,et al.  Bose-Einstein condensate in a honeycomb optical lattice: fingerprint of superfluidity at the Dirac point. , 2011, Physical review letters.

[22]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[23]  M. Polini,et al.  Engineering artificial graphene in a two-dimensional electron gas , 2009, 0904.4191.

[24]  B. Deveaud,et al.  Second-order time correlations within a polariton Bose-Einstein condensate in a CdTe microcavity. , 2008, Physical review letters.

[25]  F. Guinea,et al.  Dirac-point engineering and topological phase transitions in honeycomb optical lattices , 2008, 0807.4245.

[26]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2008, Physical review letters.

[27]  Andreas Tünnermann,et al.  Classical simulation of relativistic Zitterbewegung in photonic lattices. , 2010, Physical review letters.

[28]  M. S. Skolnick,et al.  Intrinsic decoherence mechanisms in the microcavity polariton condensate. , 2008, Physical review letters.

[29]  Ya. B. Bazaliy,et al.  Extremal transmission at the Dirac point of a photonic band structure , 2007 .

[30]  Shi-Liang Zhu,et al.  Relativistic quantum effects of Dirac particles simulated by ultracold atoms , 2012, 1203.5949.

[31]  M. Manninen,et al.  Flat bands, Dirac cones, and atom dynamics in an optical lattice , 2010, 1008.4684.

[32]  Yun Lai,et al.  Dirac spectra and edge states in honeycomb plasmonic lattices. , 2008, Physical review letters.

[33]  A. Maradudin,et al.  Photonic band structure of two-dimensional systems: The triangular lattice. , 1991, Physical review. B, Condensed matter.

[34]  P. Recher,et al.  Coherent zero-state and π-state in an exciton–polariton condensate array , 2007, Nature.

[35]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[36]  Xueqin Huang,et al.  Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. , 2011, Nature materials.

[37]  M. Soljačić,et al.  Reflection-free one-way edge modes in a gyromagnetic photonic crystal. , 2007, Physical review letters.

[38]  O. Klein,et al.  Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac , 1929 .

[39]  Francisco Guinea,et al.  Designer Dirac fermions and topological phases in molecular graphene , 2012, Nature.

[40]  A. Boattini,et al.  Supplementary Data 1 , 2013 .

[41]  S. Höfling,et al.  Dynamical d -wave condensation of exciton–polaritons in a two-dimensional square-lattice potential , 2011 .

[42]  S. Höfling,et al.  From polariton condensates to highly photonic quantum degenerate states of bosonic matter , 2011, Proceedings of the National Academy of Sciences.

[43]  S. Louie,et al.  Making massless Dirac fermions from a patterned two-dimensional electron gas. , 2008, Nano letters.

[44]  David P. DiVincenzo,et al.  Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds , 1984 .

[45]  D. Snoke,et al.  Bose–Einstein condensation of excitons in Cu2O: progress over 30 years , 2012, Reports on progress in physics. Physical Society.

[46]  Xiangdong Zhang Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. , 2008, Physical review letters.

[47]  Tilman Esslinger,et al.  Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice , 2011, Nature.

[48]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[49]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[50]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[51]  N. Goldman,et al.  Topology-induced phase transitions in quantum spin Hall lattices , 2010, 1007.2056.