Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations

Consider a continuous dynamical system for which partial information about its current state is observed at a sequence of discrete times. Discrete data assimilation inserts these observational measurements of the reference dynamical system into an approximate solution by means of an impulsive forcing. In this way the approximating solution is coupled to the reference solution at a discrete sequence of points in time. This paper studies discrete data assimilation for the Lorenz equations and the incompressible two-dimensional Navier–Stokes equations. In both cases we obtain bounds on the time interval h between subsequent observations which guarantee the convergence of the approximating solution obtained by discrete data assimilation to the reference solution.

[1]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[2]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[3]  R. Temam,et al.  Attractors Representing Turbulent Flows , 1985 .

[4]  Dean A. Jones,et al.  On the number of determining nodes for the 2D Navier-Stokes equations , 1992 .

[5]  Igor Kukavica,et al.  The Lorenz equation as a metaphor for the Navier-Stokes equations , 2001 .

[6]  Kalman filtering for linear wave equations with model error , 2011 .

[7]  Leonard A. Smith,et al.  Probabilistic noise reduction , 2001 .

[8]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[9]  Hantaek Bae Navier-Stokes equations , 1992 .

[10]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[11]  R. Temam Navier-Stokes Equations , 1977 .

[12]  Angel Jorba,et al.  A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..

[13]  Edriss S. Titi,et al.  Viscosity versus vorticity stretching: Global well-posedness for a family of Navier–Stokes-alpha-like models , 2007 .

[14]  Edriss S. Titi,et al.  Determining Modes for Continuous Data Assimilation in 2D Turbulence , 2003 .

[15]  Chun-Mei Yang,et al.  Impulsive control of Lorenz system , 1997 .

[16]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[17]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[18]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[19]  E. Titi,et al.  Determining modes and Grashof number in 2D turbulence: a numerical case study , 2008 .

[20]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[21]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[22]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[23]  Chi K. Tse,et al.  Impulsive control and synchronization of the Lorenz systems family , 2007 .