DNA–DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting

Recent experiments showed that the linear double-stranded DNA in bacteriophage capsids is both highly knotted and neatly structured. What is the physical basis of this organization? Here we show evidence from stochastic simulation techniques that suggests that a key element is the tendency of contacting DNA strands to order, as in cholesteric liquid crystals. This interaction favors their preferential juxtaposition at a small twist angle, thus promoting an approximately nematic (and apolar) local order. The ordering effect dramatically impacts the geometry and topology of DNA inside phages. Accounting for this local potential allows us to reproduce the main experimental data on DNA organization in phages, including the cryo-EM observations and detailed features of the spectrum of DNA knots formed inside viral capsids. The DNA knots we observe are strongly delocalized and, intriguingly, this is shown not to interfere with genome ejection out of the phage.

[1]  A. Leforestier,et al.  Structure of toroidal DNA collapsed inside the phage capsid , 2009, Proceedings of the National Academy of Sciences.

[2]  Richard Matthews,et al.  Knot-controlled ejection of a polymer from a virus capsid. , 2009, Physical review letters.

[3]  S. Brasilès,et al.  Bacteriophage T5 DNA ejection under pressure. , 2008, Journal of molecular biology.

[4]  D W Sumners,et al.  Simulations of knotting in confined circular DNA. , 2008, Biophysical journal.

[5]  Andrey G. Cherstvy DNA cholesteric phases: the role of DNA molecular chirality and DNA-DNA electrostatic interactions. , 2008, The journal of physical chemistry. B.

[6]  S. Harvey,et al.  Packaging double-helical DNA into viral capsids: structures, forces, and energetics. , 2008, Biophysical journal.

[7]  R. Podgornik,et al.  Packing nanomechanics of viral genomes , 2008, The European physical journal. E, Soft matter.

[8]  S. Harvey,et al.  The role of DNA twist in the packaging of viral genomes. , 2008, Biophysical journal.

[9]  Kenneth H Downing,et al.  Three-dimensional architecture of the bacteriophage phi29 packaged genome and elucidation of its packaging process. , 2008, Virology.

[10]  Guang-Jiu Zhao,et al.  Site-specific solvation of the photoexcited protochlorophyllide a in methanol: formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. , 2008, Biophysical journal.

[11]  J. Arsuagaa,et al.  DNA knotting in spooling like conformations in bacteriophages , 2008 .

[12]  J. Roca,et al.  Production of highly knotted DNA by means of cosmid circularization inside phage capsids , 2007, BMC biotechnology.

[13]  D. Marenduzzo,et al.  Dynamics of fibers growing inside soft vesicles , 2007 .

[14]  A. Evilevitch,et al.  DNA ejection from bacteriophage: Towards a general behavior for osmotic-suppression experiments , 2007, The European physical journal. E, Soft matter.

[15]  A. Evilevitch,et al.  Forces controlling the rate of DNA ejection from phage lambda. , 2007, Journal of molecular biology.

[16]  E. Katzav,et al.  A statistical approach to close packing of elastic rods and to DNA packaging in viral capsids , 2006, Proceedings of the National Academy of Sciences.

[17]  M. Muthukumar,et al.  Langevin dynamics simulations of genome packing in bacteriophage. , 2006, Biophysical journal.

[18]  J. King,et al.  Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus , 2006, Nature.

[19]  D. Sumners,et al.  Knotting of random ring polymers in confined spaces. , 2005, The Journal of chemical physics.

[20]  W. Gelbart,et al.  Dynamics of DNA ejection from bacteriophage. , 2005, Biophysical journal.

[21]  Christopher B. Stanley,et al.  DNA cholesteric pitch as a function of density and ionic strength. , 2005, Biophysical journal.

[22]  Javier Arsuaga,et al.  DNA knots reveal a chiral organization of DNA in phage capsids. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Ferrarini,et al.  From the double-stranded helix to the chiral nematic phase of B-DNA: a molecular model. , 2004, The Journal of chemical physics.

[24]  A. Stella,et al.  LETTER TO THE EDITOR: What is the length of a knot in a polymer? , 2004, cond-mat/0405253.

[25]  William M. Gelbart,et al.  Osmotic pressure inhibition of DNA ejection from phage , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Davide Marenduzzo,et al.  Thermodynamics of DNA packaging inside a viral capsid: the role of DNA intrinsic thickness. , 2003, Journal of molecular biology.

[27]  Rob Phillips,et al.  Mechanics of DNA packaging in viruses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Harvey,et al.  Investigation of viral DNA packaging using molecular mechanics models. , 2002, Biophysical chemistry.

[29]  M. Vázquez,et al.  Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Kornyshev,et al.  Chiral electrostatic interaction and cholesteric liquid crystals of DNA , 2002 .

[31]  William M. Gelbart,et al.  DNA packaging and ejection forces in bacteriophage , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[33]  C. D. Hardy,et al.  Topological challenges to DNA replication: Conformations at the fork , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Muthukumar,et al.  Translocation of a confined polymer through a hole. , 2001, Physical review letters.

[35]  S. Tans,et al.  The bacteriophage straight phi29 portal motor can package DNA against a large internal force. , 2001, Nature.

[36]  C. Cerf,et al.  A topological invariant to predict the three-dimensional writhe of ideal configurations of knots and links. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Podgornik,et al.  Elastic moduli renormalization in self-interacting stretchable polyelectrolytes , 2000, cond-mat/0004143.

[38]  N R Cozzarelli,et al.  Equilibrium distributions of topological states in circular DNA: interplay of supercoiling and knotting. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Podgornik,et al.  DNA--DNA interactions. , 1998, Current opinion in structural biology.

[40]  J. Dubochet,et al.  Electrophoretic mobility of DNA knots , 1996, Nature.

[41]  A. Leforestier,et al.  Condensed phases of DNA: Structures and phase transitions , 1996 .

[42]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[43]  N R Cozzarelli,et al.  Probability of DNA knotting and the effective diameter of the DNA double helix. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Wang,et al.  Knotting of a DNA chain during ring closure. , 1993, Science.

[45]  I. Gabashvili,et al.  Dynamics of double stranded DNA reptation from bacteriophage. , 1992, Journal of biomolecular structure & dynamics.

[46]  S. D. Fuller,et al.  Image reconstruction from cryo‐electron micrographs reveals the morphopoietic mechanism in the P2‐P4 bacteriophage system. , 1992, The EMBO journal.

[47]  De Witt Sumners,et al.  A calculus for rational tangles: applications to DNA recombination , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[48]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[49]  N. Cozzarelli,et al.  The stereostructure of knots and catenanes produced by phage λ integrative recombination: implications for mechanism and DNA structure , 1985, Cell.

[50]  N R Cozzarelli,et al.  Discovery of a predicted DNA knot substantiates a model for site-specific recombination. , 1985, Science.

[51]  F. Livolant,et al.  The organization of cholesteric spherulites , 1984 .

[52]  J. Wang,et al.  Knotted DNA from bacteriophage capsids. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[53]  L. Liu,et al.  Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. , 1981, Nucleic acids research.

[54]  S. Harrison,et al.  DNA arrangement in isometric phage heads , 1977, Nature.

[55]  R. Calendar,et al.  On the sequence similarity of the cohesive ends of coliphage P4, P2, and 186 deoxyribonucleic acid. , 1973, Biochemistry.

[56]  F. B. Fuller The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Conmar Robinson,et al.  The Cholesteric Phase in Polypeptide Solutions and Biological Structures , 1966 .